Search

found 6322 results

Images, Alexander Turnbull Library

The title reads 'Ellerslie Flower Show to return to Christchurch...' Below are nine cameos showing 'sinking violets', 'cracked chrysanthemums', 'pooey perrenials', 'rubble roses', 'portaloo poppies', 'munted marigolds', 'knackered natives', the 'lily of liquefaction' and 'wearable exhibits' which shows a woman wearing a toilet roll and carrying a spade. Context: The next Ellerslie International Flower Show will be staged in North Hagley Park from 7-11 March 2012. Following cancellation of the 2011 Show after the 22 February earthquake, Christchurch City Council has confirmed that the citys premier garden show will go ahead next year in the same venue as previous years. (http://www.ellerslieflowershow.co.nz/) Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

This study explored the experiences of 10 leaders in their intentional six-month implementation, during the 2010-2011Christchurch earthquakes, of an adapted positive leadership model. The study concluded that the combination of strategies in the model provided psychological and participative safety for leaders to learn and to apply new ways of working. Contrary to other studies on natural disaster, workplace performance increased and absenteeism decreased. The research contributes new knowledge to the positive leadership literature and new understanding, from the perspective of leaders, of the challenges of leading in a workplace environment of ongoing natural disaster events.

Research papers, University of Canterbury Library

Previous earthquakes demonstrated destructive effects of soil-structure interaction on structural response. For example, in the 1970 Gediz earthquake in Turkey, part of a factory was demolished in a town 135 km from the epicentre, while no other buildings in the town were damaged. Subsequent investigations revealed that the fundamental period of vibration of the factory was approximately equal to that of the underlying soil. This alignment provided a resonance effect and led to collapse of the structure. Another dramatic example took place in Adapazari, during the 1999 Kocaeli earthquake where several foundations failed due to either bearing capacity exceedance or foundation uplifting, consequently, damaging the structure. Finally, the Christchurch 2012 earthquakes have shown that significant nonlinear action in the soil and soil-foundation interface can be expected due to high levels of seismic excitation and spectral acceleration. This nonlinearity, in turn, significantly influenced the response of the structure interacting with the soil-foundation underneath. Extensive research over more than 35 years has focused on the subject of seismic soil-structure interaction. However, since the response of soil-structure systems to seismic forces is extremely complex, burdened by uncertainties in system parameters and variability in ground motions, the role of soil-structure interaction on the structural response is still controversial. Conventional design procedures suggest that soil-structure interaction effects on the structural response can be conservatively ignored. However, more recent studies show that soil-structure interaction can be either beneficial or detrimental, depending on the soil-structure-earthquake scenarios considered. In view of the above mentioned issues, this research aims to utilise a comprehensive and systematic probabilistic methodology, as the most rational way, to quantify the effects of soil-structure interaction on the structural response considering both aleatory and epistemic uncertainties. The goal is achieved by examining the response of established rheological single-degree-of-freedom systems located on shallow-foundation and excited by ground motions with different spectral characteristics. In this regard, four main phases are followed. First, the effects of seismic soil-structure interaction on the response of structures with linear behaviour are investigated using a robust stochastic approach. Herein, the soil-foundation interface is modelled by an equivalent linear cone model. This phase is mainly considered to examine the influence of soil-structure interaction on the approach that has been adopted in the building codes for developing design spectrum and defining the seismic forces acting on the structure. Second, the effects of structural nonlinearity on the role of soil-structure interaction in modifying seismic structural response are studied. The same stochastic approach as phase 1 is followed, while three different types of structural force-deflection behaviour are examined. Third, a systematic fashion is carried out to look for any possible correlation between soil, structural, and system parameters and the degree of soil-structure interaction effects on the structural response. An attempt is made to identify the key parameters whose variation significantly affects the structural response. In addition, it is tried to define the critical range of variation of parameters of consequent. Finally, the impact of soil-foundation interface nonlinearity on the soil-structure interaction analysis is examined. In this regard, a newly developed macro-element covering both material and geometrical soil-foundation interface nonlinearity is implemented in a finite-element program Raumoko 3D. This model is then used in an extensive probabilistic simulation to compare the effects of linear and nonlinear soil-structure interaction on the structural response. This research is concluded by reviewing the current design guidelines incorporating soil-structure interaction effects in their design procedures. A discussion is then followed on the inadequacies of current procedures based on the outcomes of this study.

Images, UC QuakeStudies

A photograph of a man cooking sausages outside the Avonhead Baptist Church for the administrators and technicians from the Department of Civil and Natural Resources Engineering at the University of Canterbury. The students and staff from this department used the church as a base after the 22 February 2011 earthquake, until their building on campus was deemed safe to enter.

Images, UC QuakeStudies

A close-up photograph of parts of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of parts of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

A collection of shovels from the Student Volunteer Army in the car park of the USCA. The shovels have been returned by students after a day of clearing liquefaction from Christchurch properties. Behind them the UCSA's "Big Top" tent can be seen, which was erected to provide support for students at the University of Canterbury in the aftermath of the 22 February 2011 earthquake.

Images, UC QuakeStudies

A collection of wheelbarrows from the Student Volunteer Army in the car park of the USCA. The wheelbarrows have been returned by students after a day of clearing liquefaction from Christchurch properties. Behind them the UCSA's "Big Top" tent can be seen, which was erected to provide support for students at the University of Canterbury in the aftermath of the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of a bookcase in the Civil Suite at the University of Canterbury after the 4 September 2010 earthquake. The photograph was taken on the day when the staff were allowed to return to the building. The shelves of the bookcase have been removed, exposing damage along the sides where they knocked against the back panel. Some books have been left on the bottom shelf.

Research papers, University of Canterbury Library

A significant portion of economic loss from the Canterbury Earthquake sequence in 2010-2011 was attributed to losses to residential buildings. These accounted for approximately $12B of a total $40B economic losses (Horspool, 2016). While a significant amount of research effort has since been aimed at research in the commercial sector, little has been done to reduce the vulnerability of the residential building stock.

Research papers, The University of Auckland Library

The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal mesh sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a snapshot of the performed experimental program and the test results and a preliminary proposed pull-out capacity of adhesive anchors are presented herein. http://www.confer.co.nz/nzsee/ VoR - Version of Record

Images, Alexander Turnbull Library

The title reads 'Satellite to plunge to earth "People should see quite a show." A 'NASA' satellite heads towards New Zealand; someone inside says 'Beep! Beep! Christchurch CBD here we come! Woo-hoo!' Context: A great deal of the CBD (Central Business District) in Christchurch is being demolished, considered to dangerous or too expensive to restore. A defunct 6.5 ton NASA satellite falls to earth this week... 26 pieces, with a combined mass of 500kg will survive the fiery re-entry and hurtle towards us. NASA doesn't have much idea of where it will land so it may demolish some of Christchurch. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

Rapid, reliable information on earthquake-affected structures' current damage/health conditions and predicting what would happen to these structures under future seismic events play a vital role in accelerating post-event evaluations, leading to optimized on-time decisions. Such rapid and informative post-event evaluations are crucial for earthquake-prone areas, where each earthquake can potentially trigger a series of significant aftershocks, endangering the community's health and wealth by further damaging the already-affected structures. Such reliable post-earthquake evaluations can provide information to decide whether an affected structure is safe to stay in operation, thus saving many lives. Furthermore, they can lead to more optimal recovery plans, thus saving costs and time. The inherent deficiency of visual-based post-earthquake evaluations and the importance of structural health monitoring (SHM) methods and SHM instrumentation have been highlighted within this thesis, using two earthquake-affected structures in New Zealand: 1) the Canterbury Television (CTV) building, Christchurch; 2) the Bank of New Zealand (BNZ) building, Wellington. For the first time, this thesis verifies the theoretically- and experimentally validated hysteresis loop analysis (HLA) SHM method for the real-world instrumented structure of the BNZ building, which was damaged severely due to three earthquakes. Results indicate the HLA-SHM method can accurately estimate elastic stiffness degradation for this reinforced concrete (RC) pinched structure across the three earthquakes, which remained unseen until after the third seismic event. Furthermore, the HLA results help investigate the pinching effects on the BNZ building's seismic response. This thesis introduces a novel digital clone modelling method based on the robust and accurate SHM results delivered by the HLA method for physical parameters of the monitored structure and basis functions predicting the changes of these physical parameters due to future earthquake excitations. Contrary to artificial intelligence (AI) based predictive methods with black-box designs, the proposed predictive method is entirely mechanics-based with an explicitly-understandable design, making them more trusted and explicable to stakeholders engaging in post-earthquake evaluations, such as building owners and insurance firms. The proposed digital clone modelling framework is validated using the BNZ building and an experimental RC test structure damaged severely due to three successive shake-table excitations. In both structures, structural damage intensifies the pinching effects in hysteresis responses. Results show the basis functions identified from the HLA-SHM results for both structures under Event 1 can online estimate structural damage due to subsequent Events 2-3 from the measured structural responses, making them valuable tool for rapid warning systems. Moreover, the digital twins derived for these two structures under Event 1 can successfully predict structural responses and damage under Events 2-3, which can be integrated with the incremental dynamic analysis (IDA) method to assess structural collapse and its financial risks. Furthermore, it enables multi-step IDA to evaluate earthquake series' impacts on structures. Overall, this thesis develops an efficient method for providing reliable information on earthquake-affected structures' current and future status during or immediately after an earthquake, considerably guaranteeing safety. Significant validation is implemented against both experimental and real data of RC structures, which thus clearly indicate the accurate predictive performance of this HLA-based method.

Images, UC QuakeStudies

People peer through the cordon fence outside Ballantynes. The photographer comments, "Whilst on the CERA red zone coach tour we passed Ballantynes and felt like caged animals. There was crowds watching us and we were caged inside the CERA coach with our keepers to make sure we were not allowed to escape our confines".

Videos, UC QuakeStudies

A video of a presentation by Hon. Nicky Wagner, Associate Minister for Canterbury Earthquake Recovery, during a panel at the 2016 Seismics in the City Conference. The panel has three themes:A City on the Move: Collaboration and Regeneration: "'Christchurch is now moving rapidly from the recovery phase into a regeneration stage with Central and Local Government working with the wider community, including the business community to ensure we get optimal outcomes for greater Christchurch' (CECC)."Looking Back: Remembering and Learning: "What are the milestones? What are the millstones? What have we learnt? What have we applied?"Looking Forward: Visioning and Building: "What do we aspire to? What are the roadblocks? What is the way forward?"

Research papers, University of Canterbury Library

1. INTRODUCTION. Earthquakes and geohazards, such as liquefaction, landslides and rock falls, constitute a major risk for New Zealand communities and can have devastating impacts as the Canterbury 2010/2011 experience shows. Development patterns expose communities to an array of natural hazards, including tsunamis, floods, droughts, and sea level rise amongst others. Fostering community resilience is therefore vitally important. As the rhetoric of resilience is mainstreamed into the statutory framework, a major challenge emerges: how can New Zealand operationalize this complex and sometimes contested concept and build ‘community capitals’? This research seeks to provide insights to this question by critically evaluating how community capitals are conceptualized and how they can contribute to community resilience in the context of the Waimakariri District earthquake recovery and regeneration process.

Images, UC QuakeStudies

Labour Party leader Phil Goff speaking to members of the Student Volunteer Army in the UCSA car park outside the UCSA's "Big Top" tent. The tent was erected to provide support for students at the University of Canterbury in the aftermath of the 22 February 2011 earthquake.

Articles, UC QuakeStudies

An article from the Media Studies Journal of Aotearoa New Zealand Volume 14, Number 1. The article is titled, "Against the Odds: community access radio broadcasting during the Canterbury earthquakes, some reflections on Plains FM 96.9". It was written by Brian Pauling and Nicki Reece.

Images, UC QuakeStudies

Photograph captioned by Fairfax, "New Zealand's Governor-General Anand Satyanand and his wife Susan Satyanand visited sites around earthquake stricken Canterbury today. (L-R) Selwyn District mayor Kelvin Coe, Christchurch city councillor Bob Shearing, Lady Susan and Governor-General Anand Satyanand visit badly affected Halswell Primary School".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "New Zealand's Governor-General Anand Satyanand and his wife Susan Satyanand visited sites around earthquake stricken Canterbury today. (L-R) Selwyn District mayor Kelvin Coe, Christchurch city councillor Bob Shearing, Lady Susan and Governor-General Anand Satyanand visit badly affected Halswell Primary School".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "New Zealand's Governor-General Anand Satyanand and his wife Susan Satyanand visited sites around earthquake stricken Canterbury today. (L-R) Selwyn District mayor Kelvin Coe, Christchurch city councillor Bob Shearing, Lady Susan and Governor-General Anand Satyanand visit badly affected Halswell Primary School".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "New Zealand's Governor-General Anand Satyanand and his wife Susan Satyanand visited sites around earthquake stricken Canterbury today. (L-R) Selwyn District mayor Kelvin Coe, Christchurch city councillor Bob Shearing, Lady Susan and Governor-General Anand Satyanand visit badly affected Halswell Primary School".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "New Zealand's Governor-General Anand Satyanand and his wife Susan Satyanand visited sites around earthquake stricken Canterbury today. (L-R) Selwyn District mayor Kelvin Coe, Christchurch city councillor Bob Shearing, Lady Susan and Governor-General Anand Satyanand visit badly affected Halswell Primary School".