Search

found 5861 results

Images, UC QuakeStudies

A photograph of the earthquake damage to a Stonehurst Accommodation building on Gloucester. The bottom storey of the building has collapsed and the top two storeys are resting on the rubble. One wall of the building has also collapsed, exposing the rooms inside.

Images, UC QuakeStudies

A photograph of the earthquake damage to a house on Woodham Road. The house has come off its foundations as the bricks wall have crumbled, spilling onto the footpath in front. Road cones have been placed along the street to warn road users.

Images, UC QuakeStudies

A photograph of a member of an emergency management team standing in front of an excavator on Manchester Street. The excavator is sitting on top of a pile of rubble from several earthquake-damaged buildings. In the background is another excavator clearing rubble.

Images, UC QuakeStudies

A photograph of volunteers from the Wellington Emergency Management Office at the canteen set up as part of a temporary Civil Defence headquarters after the 4 September 2010 earthquake. The headquarters was set up at the Mainland Foundation Ballpark on Pages Road.

Images, UC QuakeStudies

A photograph of a man at the 'free legal help' table in a temporary emergency management centre set up after the 22 February 2011 earthquake. The table was set up by Community Law Canterbury to offer free legal help to those in need.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Knox Church on the corner of Bealey Avenue and Victoria Street. The gable wall has crumbled, and the bricks have spilt onto the footpath in front. USAR codes have been spray painted on the walls.

Images, UC QuakeStudies

A photograph of emergency management personnel crossing the intersection of High, Colombo, and Hereford Streets. In the background is the earthquake-damaged Fisher's Building. Large sections of the top storey have collapsed, the masonry spilling onto the footpath and damaging the awning.

Images, UC QuakeStudies

A photograph of members of the Wellington Emergency Management Office walking down Gloucester Street towards the intersection of Manchester Street. Bricks from an earthquake-damaged building cover the footpath in the distance. Wire fences have been placed around the rubble as a cordon.

Images, UC QuakeStudies

A photograph of stretchers and blankets in Cowles Stadium on Pages Road. The stadium was set up by Civil Defence as temporary accommodation for citizens displaced by the 4 September 2010 earthquake. In the background are a stack of mattresses and a cot.

Images, UC QuakeStudies

A photograph captioned by BeckerFraserPhotos, "The Octagon Live Restaurant, formerly Trinity Congregational Church, on the corner of Manchester and Worcester Street. This was further damaged in the 23 December 2011 earthquake when a big piece of the rose window fell out".

Images, UC QuakeStudies

A photograph of the earthquake damage to the Cranmer Courts on the corner of Montreal and Kilmore Streets. A large section of the building has crumbled, masonry spilling onto the footpath below. Wire fencing has been placed around the building as a cordon.

Research Papers, Lincoln University

Numerous studies have shown that urban soils can contain elevated concentrations of heavy metals (HMs). Christchurch, New Zealand, is a relatively young city (150 years old) with a population of 390,000. Most soils in Christchurch are sub-urban, with food production in residential gardens a popular activity. Earthquakes in 2010 and 2011 have resulted in the re-zoning of 630 ha of Christchurch, with suggestions that some of this land could be used for community gardens. We aimed to determine the HM concentrations in a selection of suburban gardens in Christchurch as well as in soils identified as being at risk of HM contamination due to hazardous former land uses or nearby activities. Heavy metal concentrations in suburban Christchurch garden soils were higher than normal background soil concentrations. Some 46% of the urban garden samples had Pb concentrations higher than the residential land use national standard of 210 mg kg⁻¹, with the most contaminated soil containing 2615 mg kg⁻¹ Pb. Concentrations of As and Zn exceeded the residential land use national standards (20 mg kg⁻¹ As and 400 mg kg⁻¹ Zn) in 20% of the soils. Older neighbourhoods had significantly higher soil HM concentrations than younger neighbourhoods. Neighbourhoods developed pre-1950s had a mean Pb concentration of 282 mg kg⁻¹ in their garden soils. Soil HM concentrations should be key criteria when determining the future land use of former residential areas that have been demolished because of the earthquakes in 2010 and 2011. Redeveloping these areas as parklands or forests would result in less human HM exposure than agriculture or community gardens where food is produced and bare soil is exposed.

Research papers, University of Canterbury Library

This study explicitly investigates uncertainties in physics-based ground motion simulation validation for earthquakes in the Canterbury region. The simulations utilise the Graves and Pitarka (2015) hybrid methodology, with separately quantified parametric uncertainties in the comprehensive physics and simplified physics components of the model. The study is limited to the simulation of 148 small magnitude (Mw 3.5 – 5) earthquakes, with a point source approximation for the source rupture representations, which also enables a focus on a small number of relevant uncertainties. The parametric uncertainties under consideration were selected through sensitivity analysis, and specifically include: magnitude, Brune stress parameter and high frequency rupture velocity. Twenty Monte Carlo realisations were used to sample parameter uncertainties for each of the 148 events. Residuals associated with the following intensity measures: spectral acceleration, peak ground velocity, arias intensity and significant duration, were ascertained. Using these residuals, validation was performed through assessment of systematic biases in site and source terms from mixed-effects regression. Based on the results to date, initial standard deviation recommendations for parameter uncertainties, based on the Canterbury simulations have been obtained. This work ultimately provides an initial step toward explicit incorporation of modelling uncertainty in simulated ground motion predictions for future events, which will improve the use of simulation models in seismic hazard analysis. We plan to subsequently assess uncertainties for larger magnitude events with more complex ruptures, and events across a larger geographic region, as well as uncertainties due to path attenuation, site effects, and more general model epistemic uncertainties.

Research Papers, Lincoln University

Creativity that is driven by a need for physical or economic survival, which disasters are likely to inspire, raises the question of whether such creativity fits with conventional theories and perspectives of creativity. In this paper we use the opportunity afforded by the 2010-2013 Christchurch, New Zealand earthquakes to follow and assess the creative practices and responses of a number of groups and individuals. We use in-depth interviews to tease out motivations and read these against a range of theoretical propositions about creativity. In particular, we focus on the construct of “elite panic” and the degree to which this appeared to be evident in the Christchurch earthquakes context. Bureaucratic attempts to control or limit creativity were present but they did not produce a completely blanket dampening effect. Certain individuals and groups seemed to be pre-equipped to navigate or ignore potential blocks to creativity. We argue, using Geir Kaufmann’s novelty-creativity matrix and aspects of Teresa Amabile’s and Michael G. Pratt’s revised componential theory of creativity that a special form of disaster creativity does exist.

Research papers, University of Canterbury Library

The lived reality of the 2010-2011 Canterbury earthquakes and its implications for the Waimakariri District, a small but rapidly growing district (third tier of government in New Zealand) north of Christchurch, can illustrate how community well-being, community resilience, and community capitals interrelate in practice generating paradoxical results out of what can otherwise be conceived as a textbook ‘best practice’ case of earthquake recovery. The Waimakariri District Council’s integrated community based recovery framework designed and implemented post-earthquakes in the District was built upon strong political, social, and moral capital elements such as: inter-institutional integration and communication, participation, local knowledge, and social justice. This approach enabled very positive community outputs such as artistic community interventions of the urban environment and communal food forests amongst others. Yet, interests responding to broader economic and political processes (continuous central government interventions, insurance and reinsurance processes, changing socio-cultural patterns) produced a significant loss of community capitals (E.g.: social fragmentation, participation exhaustion, economic leakage, etc.) which simultaneously, despite local Council and community efforts, hindered community well-being in the long term. The story of the Waimakariri District helps understand how resilience governance operates in practice where multi-scalar, non-linear, paradoxical, dynamic, and uncertain outcomes appear to be the norm that underpins the construction of equitable, transformative, and sustainable pathways towards the future.