This research examines the connection between accessibility and resilience in post-earthquake Christchurch. This research will provide my community partner with a useful evidence base to help show that increased accessibility does create a more resilient environment. This research uses an in-depth literature review along with qualitative interview approach discussing current levels of accessibility and resilience in Christchurch and whether or not the interview participants believe that increased accessibility in Christchurch will make our city more resilient to future disasters. This research is important because it helps to bridge the connection between accessibility and resilience by showing how accessibility is an important aspect of making a city resilient. In Christchurch specifically, it is a great time to create an accessible and inclusive environment in the post-earthquake rebuild state the city is currently in. Showing that an accessible environment will lead to a more resilient city is important will potentially lead to accessible design being included in the rebuild of places and spaces in Christchurch. In theory, the results of this research show that having an accessible environment leads to universal inclusiveness which in turn, leads to a resilient city. An overarching theme that arose during this research is that accessibility is a means to inclusion and without inclusion a society cannot be resilient. In practice, the results show that for Christchurch to become more accessible and inclusive for people with disabilities, there needs to not only be an increase the accessibility of places and spaces but accessibility to the community as well. Having accessible infrastructure and communities will lead to increased social and urban resilience, especially for individuals with disabilities. This research is beneficial because it helps to bridge the connection between accessibility and resilience. Resilience is important because it help cities prepare for, respond to and recover from disasters and this research helps to show that accessibility is an important part of creating resilience. Some questions still remain unresolved mainly looking into normalising accessibility and deciphering how to prove that accessibility is an issue that effects everybody, not just individuals with disabilities.
This research examines the connection between accessibility and resilience in post-earthquake Christchurch. This research will provide my community partner with a useful evidence base to help show that increased accessibility does create a more resilient environment. This research uses an in-depth literature review along with qualitative interview approach discussing current levels of accessibility and resilience in Christchurch and whether or not the interview participants believe that increased accessibility in Christchurch will make our city more resilient to future disasters. This research is important because it helps to bridge the connection between accessibility and resilience by showing how accessibility is an important aspect of making a city resilient. In Christchurch specifically, it is a great time to create an accessible and inclusive environment in the post-earthquake rebuild state the city is currently in. Showing that an accessible environment will lead to a more resilient city is important will potentially lead to accessible design being included in the rebuild of places and spaces in Christchurch. In theory, the results of this research show that having an accessible environment leads to universal inclusiveness which in turn, leads to a resilient city. An overarching theme that arose during this research is that accessibility is a means to inclusion and without inclusion a society cannot be resilient. In practice, the results show that for Christchurch to become more accessible and inclusive for people with disabilities, there needs to not only be an increase the accessibility of places and spaces but accessibility to the community as well. Having accessible infrastructure and communities will lead to increased social and urban resilience, especially for individuals with disabilities. This research is beneficial because it helps to bridge the connection between accessibility and resilience. Resilience is important because it help cities prepare for, respond to and recover from disasters and this research helps to show that accessibility is an important part of creating resilience. Some questions still remain unresolved mainly looking into normalising accessibility and deciphering how to prove that accessibility is an issue that effects everybody, not just individuals with disabilities.
Questions to Ministers 1. Hon ANNETTE KING to the Prime Minister: What recent reports has he received on the impact of rising prices on families in light of his statement that "no one is worse off"? 2. AARON GILMORE to the Minister of Finance: How is the Government supporting the earthquake recovery effort in Canterbury? 3. Hon DAVID CUNLIFFE to the Prime Minister: Does he stand by his statement that his plan to sell public assets would give "New Zealanders a fantastic opportunity to invest in this country's future"? 4. KANWALJIT SINGH BAKSHI to the Minister of Corrections: What progress has been made in using technology to improve public safety and reduce costs in the criminal justice system? 5. Hon DAVID PARKER to the Prime Minister: Does he stand by his statement "each of us can do something that could save someone's job, create a new job for another person or help someone else find a new job as soon as possible"? 6. LOUISE UPSTON to the Minister for Communications and Information Technology: What benefits will ultra-fast broadband services bring to education in New Zealand? 7. GRANT ROBERTSON to the Minister of Health: Is it correct that there is a $156 million gap between the amount the Ministry of Health has advised was necessary to meet population and demographic growth in Vote Health for 2011/12 and the amount of new spending allocated for Vote Health in the 2011 Budget? 8. KEVIN HAGUE to the Prime Minister: Does he stand by his statement on Breakfast yesterday that "we're constantly changing aquaculture laws, or fishing laws, or whatever it might be. I mean in the case of Sky City, that particular licence is site specific"? 9. JACINDA ARDERN to the Prime Minister: Does he stand by his statement that "it is New Zealanders … that create new jobs and opportunities - not the Government"? 10. KATRINA SHANKS to the Minister of Housing: What recent announcement has he made about the Government's response to the Housing Shareholders' Advisory Group report? 11. DARIEN FENTON to the Prime Minister: Does he stand by his statement on proposed labour law changes "we are not talking dramatic changes"? 12. JONATHAN YOUNG to the Acting Minister of Energy and Resources: What recent initiatives has the Government undertaken to help New Zealanders control the cost of their power bills?
Prognostic modelling provides an efficient means to analyse the coastal environment and provide effective knowledge for long term urban planning. This paper outlines how the use of SWAN and Xbeach numerical models within the ESRI ArcGIS interface can simulate geomorphological evolution through hydrodynamic forcing for the Greater Christchurch coastal environment. This research followed the data integration techniques of Silva and Taborda (2012) and utilises their beach morphological modelling tool (BeachMM tool). The statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 were examined to determine whether these requirements are currently being complied with when applying the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013), and it would appear that it does not meet those requirements. This is because coastal hazard risk has not been thoroughly quantified by the installation of the Canterbury Earthquake Recovery Authority (CERA) residential red zone. However, the Christchurch City Council’s (CCC) flood management area does provide an extent to which managed coastal retreat is a real option. This research assessed the effectiveness of the prognostic models, forecasted a coastline for 100 years from now, and simulated the physical effects of extreme events such as storm surge given these future predictions. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon similar to the CCC’s flood management area. There are complex interactions at the Waimakariri River mouth with very high rates of accretion and erosion within a small spatial scale due to the river discharge. There is domination of the marine environment over the river system determined by the lack of generation of a distinct river delta, and river channel has not formed within the intertidal zone clearly. The Avon-Heathcote ebb tidal delta aggrades on the innner fan and erodes on the outer fan due to wave domination. The BeachMM tool facilitates the role of spatial and temporal analysis effectively and the efficiency of that performance is determined by the computational operating system.
Aotearoa New Zealand’s population has grown rapidly from 3.85 million in 2000, to 5 million in 2020. Ethnic diversity has consequently increased. Territorial Authorities (TAs) undertaking statutory consultation and wider public engagement processes need to respond to increased diversity and foster inclusivity. Inclusivity is necessary to facilitate a greater understanding of TA statutory functions, as well as to encourage awareness and participation in annual planning processes, and resource management plans and consents. We examined perceptions, and experiences, of planning within the ethnic Chinese immigrant population of Christchurch. The Chinese ethnic group is a significant part of the city’s population and is in itself derived from diverse cultural and language backgrounds. We surveyed 111 members of this community, via social media and in person, to identify environmental and planning issues of concern to them. We sought to ascertain their previous engagement with planning processes and to gauge their willingness for future involvement. We also undertook a small number of semi-structured interviews with Chinese immigrants to explore their experiences with planning in more detail. Results showed only 6% of respondents had been engaged in any planning processes, despite only 20% being unwilling to participate. We analysed these responses by gender, age, visa category, and length of time resident in Christchurch. Notwithstanding the low level of reported engagement, earthquake recovery (70% of respondents) along with water quality, transport, and air quality were the most important issues of concern. However, there was a general lack of awareness of the ability to make public submissions on these and other issues, and of the statutory responsibilities of TAs. We discuss possible explanations and provide several suggestions for TAs to increase awareness and to improve engagement. This includes further research to assist in identifying the nature of barriers as well as the effectiveness of trialling different solutions.
Researchers have begun to explore the opportunity presented by blue-green infrastructure(a subset of nature-based solutions that provide blue and green space in urban infrastructure)as a response to the pressures of climate change. The 2010/2011 Canterbury earthquake sequence created a unique landscape within which there is opportunity to experiment with and invest in new solutions to climate change adaptation in urban centres. Constructed wetlands are an example of blue-green infrastructure that can potentially support resilience in urban communities. This research explores interactions between communities and constructed wetlands to understand how this may influence perceptions of community resilience. The regeneration of the Ōtākaro Avon River Corridor (OARC) provides a space to investigate these relationships. Seven stakeholders from the community, industry, and academia, each with experience in blue-green infrastructure in the OARC, participated in a series of semi-structured interviews. Each participant was given the opportunity to reflect on their perspectives of community, community resilience, and constructed wetlands and their interconnections. Interview questions aligned with the overarching research objectives to (1) understand perceptions around the role of wetlands in urban communities, (2) develop a definition for community resilience in the context of the Ōtākaro Avon community, and (3) reflect on how wetlands can contribute to (or detract from) community resilience. This study found that constructed wetlands can facilitate learning about the challenges and solutions needed to adapt to climate change. From the perspective of the community representatives, community resilience is linked to social capital. Strong social networks and a relationship with nature were emphasised as core components of a community’s ability to adapt to disruption. Constructed wetlands are therefore recognised as potentially contributing to community resilience by providing spaces for people to engage with each other and nature. Investment in constructed wetlands can support a wider response to climate change impacts. This research was undertaken with the support of the Ōtākaro Living Laboratory Trust, who are invested in the future of the OARC. The outcomes of this study suggest that there is an opportunity to use wetland spaces to establish programmes that explore the perceptions of constructed wetlands from a broader community definition, at each stage of the wetland life cycle, and at wider scales(e.g., at a city scale or beyond).
After a disaster, cities experience profound social and environmental upheaval. Current research on disasters describes this social disruption along with collective community action to provide support. Pre-existing social capital is recognised as fundamental to this observed support. This research examines the relationship between sense of place for neighbourhood, social connectedness and resilience. Canterbury residents experienced considerable and continued disruption following a large and protracted sequence of earthquakes starting in September 2010. A major aftershock on 22 February 2011 caused significant loss of life, destruction of buildings and infrastructure. Following this earthquake some suburbs of Christchurch showed strong collective action. This research examines the features of the built environment that helped to form this cooperative support. Data were collected through semi-structured interviews with 20 key informants followed by 38 participants from four case study suburbs. The objectives were to describe the community response of suburbs, to identify the key features of the built environment and the role of social infrastructure in fostering social connectedness. The last objective was to contribute to future planning for community resilience. The findings from this research indicated that social capital and community competence are significant resources to be called upon after a disaster. Features of the local environment facilitated the formation of neighbourhood connections that enabled participants to cope, manage and to collectively solve problems. These features also strengthened a sense of belonging and attachment to the home territory. Propinquity was important; the bumping and gathering places such as schools, small local shops and parks provided the common ground for meaningful pre-existing local interaction. Well-defined geography, intimate street typology, access to quality natural space and social infrastructure helped to build the local social connections and develop a sense of place. Resourceful individuals and groups were also a factor, and many are drawn to live near the inner city or more natural places. The features are the same well understood attributes that contribute to health and wellbeing. The policy and planning framework needs to consider broader social outcomes, including resilience in new and existing urban developments. The socio-political structures that provide access to secure and stable housing and local education should also be recognised and incorporated into local planning for resilience and the everyday.
The Amuri Earthquake of September 1, 1888 (magnitude M = 6.5 to 6.8) occurred on the Hope River Segment of the Hope Fault west of Hanmer Plains. The earthquake was felt strongly in North Canterbury and North Westland and caused considerable property damage and landsliding in the Lower Hope Valley. However, damage reports and the spatial distribution of felt intensities emphasize extreme variations in seismic effects over short distances, probably due to topographic focusing and local ground conditions. Significant variations in lateral fault displacement occurred at secondary fault segment boundaries (side-steps and bends in the fault trace) during the 1888 earthquake. This historical spatial variation in lateral slip is matched by the Late Quaternary geomorphic distribution of slip on the Hope River Segment of the Hope Fault. Trenching studies at two sites on the Hope Fault have also identified evidence for five pre-historic earthquakes of similar magnitude to the 1888 earthquake and an average recurrence interval of 134 ± 27 years between events. Magnitude estimates for the 1888 earthquake are combined with a. strong ground motion attenuation expression to provide an estimate of potential ground accelerations in Amuri District during-future earthquakes on the Hope River Segment of the Hope Fault. The predicted acceleration response on bedrock sites within 20 km of the epicentral region is between 0.23 g and 0.34 g. The close match between the historic, inferred pre-historic and geomorphic distribution of lateral slip indicates that secondary fault segmentation exerts a strong structural control on rupture propagation and the expression of fault displacement at the surface. In basement rocks at depth the spatial variations in slip are inferred to be distributed within zones of pervasive cataclastic shear, on either side of the fault segment boundaries. The large variations in surface displacement across fault segment boundaries means that one must know the geometry of the fault in order to evaluate slip-rates calculated from individual locations. The average Late Quaternary slip-rate on the Hope Fault at Glynn Wye Station is between 15.5 mm/yr and 18.25 mm/yr and the rate on the subsidiary Kakapo Fault is between 5.0 mm/yr and 7.5 mm/yr. These rates have been determined from sites which are relatively free of structural complication.
The recent earthquakes in Christchurch have made it clear that issues exist with current RC frame design in New Zealand. In particular, beam elongation in RC frame buildings was widespread and resulted in numerous buildings being rendered irreparable. Design solutions to overcome this problem are clearly needed, and the slotted beam is one such solution. This system has a distinct advantage over other damage avoidance design systems in that it can be constructed using current industry techniques and conventional reinforcing steel. As the name suggests, the slotted beam incorporates a vertical slot along part of the beam depth at the beam-column interface. Geometric beam elongation is accommodated via opening and closing of these slots during seismically induced rotations, while the top concrete hinge is heavily reinforced to prevent material inelastic elongation. Past research on slotted beams has shown that the bond demand on the bottom longitudinal reinforcement is increased compared with equivalent monolithic systems. Satisfying this increased bond demand through conventional means may yield impractical and economically less viable column dimensions. The same research also indicated that the joint shear mechanism was different to that observed within monolithic joints and that additional horizontal reinforcement was required as a result. Through a combination of theoretical investigation, forensic analysis, and database study, this research addresses the above issues and develops design guidelines. The use of supplementary vertical joint stirrups was investigated as a means of improving bond performance without the need for non-standard reinforcing steel or other hardware. These design guidelines were then validated experimentally with the testing of two 80% scale beam-column sub-assemblies. The revised provisions for bond within the bottom longitudinal reinforcement were found to be adequate while the top longitudinal reinforcement remained nominally elastic throughout both tests. An alternate mechanism was found to govern joint shear behaviour, removing the need for additional horizontal joint reinforcement. Current NZS3101:2006 joint shear reinforcement provisions were found to be more than adequate given the typically larger column depths required rendering the strut mechanism more effective. The test results were then used to further refine design recommendations for practicing engineers. Finally, conclusions and future research requirements were outlined.
Christchurch has experienced a series of over 13,500 earthquakes between September 2010 and January 2012. Some children who have been exposed to earthquakes may experience post-traumatic stress disorder symptoms (PTSD) including difficulty concentrating, feeling anxious, restlessness and confusion. Other children may be resilient to the effects of disaster. Western models of resilience relate to a child’s social support and their capacity to cope. The Māori model of wellbeing relates to whanau (family), wairua (spiritual connections), tinana (the physical body) and hinengaro (the mind and emotions). Children’s concepts of helping, caring and learning may provide insight into resilience without introducing the topic of earthquakes into the conversation, which in itself may provoke an episode of stress. Many researchers have studied the effects of earthquakes on children. However, few studies have examined positive outcomes and resilience or listened to the children’s voices. The objective of this study was to listen to the voices of children who experienced the Canterbury earthquake period in order to gain a deeper understanding of the ideas associated resilience. Individual interviews were conducted with 17 five-year-old participants during their first term of primary school. After the interviews, the teacher shared demographic information and reports on the children’s stress and coping. Six children were identified as New Zealand European and eleven children identified as New Zealand Māori. Children had different views of helping, caring and learning. Themes of resilience from Western and Kaupapa Māori models were identified in transcripts of the children's voices and drawings. Māori children voiced more themes of resilience associated with the Western model, and in the Tapa Whā model, Māori children's transcripts were more likely to be inclusive of all four components of well-being. How five-year-old children, having experienced an earthquake disaster during their preschool years, talk or draw pictures about helping, caring and learning can provide insight into resilience, especially in situations where it is not advisable to re-traumatise children by discussing the disaster event. Future research should interview parents/caregivers and whānau to gain further insights. Considering information from both a Western and a Tapa Whā perspective can also provide new insights into resilience in young children. A limitation of this study is that qualitative studies are not always free from a researcher’s interpretation and are, therefore, subjective.
Depending on their nature and severity, disasters can create large volumes of debris and waste. Waste volumes from a single event can be the equivalent of many times the annual waste generation rate of the affected community. These volumes can overwhelm existing solid waste management facilities and personnel. Mismanagement of disaster waste can affect both the response and long term recovery of a disaster affected area. Previous research into disaster waste management has been either context specific or event specific, making it difficult to transfer lessons from one disaster event to another. The aim of this research is to develop a systems understanding of disaster waste management and in turn develop context- and disaster-transferrable decision-making guidance for emergency and waste managers. To research this complex and multi-disciplinary problem, a multi-hazard, multi-context, multi-case study approach was adopted. The research focussed on five major disaster events: 2011 Christchurch earthquake, 2009 Victorian Bushfires, 2009 Samoan tsunami, 2009 L’Aquila earthquake and 2005 Hurricane Katrina. The first stage of the analysis involved the development of a set of ‘disaster & disaster waste’ impact indicators. The indicators demonstrate a method by which disaster managers, planners and researchers can simplify the very large spectra of possible disaster impacts, into some key decision-drivers which will likely influence post-disaster management requirements. The second stage of the research was to develop a set of criteria to represent the desirable environmental, economic, social and recovery effects of a successful disaster waste management system. These criteria were used to assess the effectiveness of the disaster waste management approaches for the case studies. The third stage of the research was the cross-case analysis. Six main elements of disaster waste management systems were identified and analysed. These were: strategic management, funding mechanisms, operational management, environmental and human health risk management, and legislation and regulation. Within each of these system elements, key decision-making guidance (linked to the ‘disaster & disaster waste’ indicators) and management principles were developed. The ‘disaster & disaster waste’ impact indicators, the effects assessment criteria and management principles have all been developed so that they can be practically applied to disaster waste management planning and response in the future.
<strong>Sea level rise is one consequence of Earth’s changing climate. Century-long tide gauge records show that global-mean sea-level rise reached 11-16 cm during the twentieth century at a mean rate of 1.2 mm/y. Today, the average rate of global-mean sea-level rise is higher at 3-4 mm/y and is expected to increase in the future. This represents a hazard to low elevation coastal zones worldwide. Yet, before global sea level projections can be used to characterise future coastal flood hazard at a local scale, the effects of tectonics (and other processes) that drive vertical land motion (VLM) must be considered. VLM is defined as the vertical velocity (uplift or subsidence) of the solid surface with respect to the centre of Earth. In this study, new VLM maps are generated over coastal strips in New Zealand, using Sentinel-1 InSAR and GNSS data.</strong>In New Zealand, measuring VLM using InSAR on naturally vegetated or agricultural land is difficult due to signal decorrelation. Along the rural Bay of Plenty coastal strip, I use a persistent-scatterer approach to generate a VLM map from both east-looking ascending and west-looking descending Sentinel-1 data between 2015-2021. Using time-series data over the same time period from a dense network of 20 GNSS sensors, I tie InSAR-derived line-of-sight velocity to the 2014 ITRF reference frame. I test two different methods for measuring VLM and compare the results against GNSS vertical velocity along the Bay of Plenty coast. Best results are achieved by first removing the interpolated horizontal GNSS velocity field from each of the InSAR datasets, before averaging the two VLM estimates. Measured VLM is between -3 and 3 mm/y, with negative values (subsidence) occurring within the low-lying Rangitāiki Plain and Ōpōtiki valley, and uplift across the elevated region west of Matatā.This thesis integrates geomorphological, geological, and historical levelling VLM records with modern satellite datasets to assess VLM across timescales ranging from 10 to 100,000 years at Matatā. Uplift rate has been variable through time, with average uplift over the last 300,000 years of 1 mm/y, 4.5 mm/y since 1720 years, 2 mm/y between 1950-1978, and 10 mm/y between 2004-2011. Previous modelling has shown that the best fit to the 2004-2011 rapid uplift rates is an inflating magmatic source at ~10 km depth beneath Matatā. To reconcile all data, I present a VLM model that consists of short-lived periods (7 years) of rapid uplift (10 mm/y), separated by longer periods (30 years) of lower background uplift (3 mm/y). The episodic nature of VLM at Matatā likely reflects short-lived periods of magmatic intrusion. Episodic VLM characterised by large rates of uplift (10 mm/y) has been seen at Taupō volcano, and other volcanic centers globally. It has been 12 years since the end of the last intrusion episode; this modelling suggest one may expect to observe increased uplift rates at Matatā in the coming decades. Densely populated urban coastal strips are most at risk from the effects of relative sea-level rise. At the same time, anthropogenic activities associated with urbanization, such as groundwater withdrawal, and land reclamation can lead to local land subsidence (LLS), further exacerbating the risk to urban infrastructure. LLS refers to subsidence relative to nearby land area assumed to be stable. In this thesis, I create the first high-resolution (10 m) maps of LLS at six urban coastal strips in New Zealand, with a combined length of 285 km, using Sentinel-1 InSAR data between 2018-2021. This analysis reveals 89% of urban coastal strips are subsiding at rates of -0.5 mm/y or greater, and 11% is subsiding at higher rates of -3.0 mm/y or greater. On average, subsidence is -0.6 to -2.9 mm/y higher at the coastal strip, compared to inland areas occupied by GNSS stations. This analysis also documents highly-localised hotspots of LLS, with subsidence rates of up to -15 mm/y. In Christchurch, rapid and localised subsidence (-8 mm/y) is observed within coastal suburbs New Brighton and Southshore. In most cities, the highest subsidence rates occur on land reclaimed in the early-late twentieth century, and in areas built on Holocene sediment. Time-series analysis of LLS at sites of reclaimed land shows both linear and non-linear rates of deformation over time periods of up to 6-8 years. This thesis highlights the variable exposure to relative sea-level rise of New Zealand coastal strips, and demonstrates that in many cases current rates of VLM should be expected to continue for the next few decades.
Currently there is a worldwide renaissance in timber building design. At the University of Canterbury, new structural systems for commercial multistorey timber buildings have been under development since 2005. These systems incorporate large timber sections connected by high strength post-tensioning tendons, and timber-concrete composite floor systems, and aim to compete with existing structural systems in terms of cost, constructability, operational and seismic performance. The development of post-tensioned timber systems has created a need for improved lateral force design approaches for timber buildings. Current code provisions for seismic design are based on the strength of the structure, and do not adequately account for its deformation. Because timber buildings are often governed by deflection, rather than strength, this can lead to the exceedence of design displacement limitations imposed by New Zealand codes. Therefore, accurate modeling approaches which define both the strength and deformation of post-tensioned timber buildings are required. Furthermore, experimental testing is required to verify the accuracy of these models. This thesis focuses on the development and experimental verification of modeling approaches for the lateral force design of post-tensioned timber frame and wall buildings. The experimentation consisted of uni-direcitonal and bi-directional quasi-static earthquake simulation on a two-thirds scale, two-storey post-tensioned timber frame and wall building with timber-concrete composite floors. The building was subjected to lateral drifts of up to 3% and demonstrated excellent seismic performance, exhibiting little damage. The building was instrumented and analyzed, providing data for the calibration of analytical and numerical models. Analytical and numerical models were developed for frame, wall and floor systems that account for significant deformation components. The models predicted the strength of the structural systems for a given design performance level. The static responses predicted by the models were compared with both experimental data and finite element models to evaluate their accuracy. The frame, wall and floor models were then incorporated into an existing lateral force design procedure known as displacement-based design and used to design several frame and wall structural systems. Predictions of key engineering demand parameters, such as displacement, drift, interstorey shear, interstorey moment and floor accelerations, were compared with the results of dynamic time-history analysis. It was concluded that the numerical and analytical models, presented in this thesis, are a sound basis for determining the lateral response of post-tensioned timber buildings. However, future research is required to further verify and improve these prediction models.
The city of Ōtautahi/Christchurch experienced a series of earthquakes that began on September 4th, 2010. The most damaging event occurred on February 22nd, 2011 but significant earthquakes also occurred on June 13th and December 23rd with aftershocks still occurring well into 2012. The resulting disaster is the second deadliest natural disaster in New Zealand’s history with 185 deaths. During 2011 the Canterbury earthquakes were one of the costliest disasters worldwide with an expected cost of up to $NZ30 billion. Hundreds of commercial buildings and thousands of houses have been destroyed or are to be demolished and extensive repairs are needed for infrastructure to over 100,000 homes. As many as 8,900 people simply abandoned their homes and left the city in the first few months after the February event (Newell, 2012), and as many as 50,000 may leave during 2012. In particular, young whānau and single young women comprised a disproportionate number of these migrants, with evidence of a general movement to the North Island. Te Puni Kōkiri sought a mix of quantitative and qualitative research to examine the social and economic impacts of the Christchurch earthquakes on Māori and their whānau. The result of this work will be a collection of evidence to inform policy to support and assist Māori and their whānau during the recovery/rebuild phases. To that end, this report triangulates available statistical and geographical information with qualitative data gathered over 2010 and 2011 by a series of interviews conducted with Māori who experienced the dramatic events associated with the earthquakes. A Māori research team at Lincoln University was commissioned to undertake the research as they were already engaged in transdisciplinary research (began in the May 2010), that focused on quickly gathering data from a range of Māori who experienced the disaster, including relevant economic, environmental, social and cultural factors in the response and recovery of Māori to these events. Participants for the qualitative research were drawn from Māori whānau who both stayed and left the city. Further data was available from ongoing projects and networks that the Lincoln research team was already involved in, including interviews with Māori first responders and managers operating in the CBD on the day of the February event. Some limited data is also available from younger members of affected whānau. Māori in Ōtautahi/Christchurch City have exhibited their own culturally-attuned collective responses to the disaster. However, it is difficult to ascertain Māori demographic changes due to a lack of robust statistical frameworks but Māori outward migration from the city is estimated to range between 560 and 1,100 people. The mobility displayed by Māori demonstrates an important but unquantified response by whānau to this disaster, with emigration to Australia presenting an attractive option for young Māori, an entrenched phenomenon that correlates to cyclical downturns and the long-term decline of the New Zealand economy. It is estimated that at least 315 Māori have emigrated from the Canterbury region to Australia post-quake, although the disaster itself may be only one of a series of events that has prompted such a decision. Māori children made up more than one in four of the net loss of children aged 6 to 15 years enrolled in schools in Greater Christchurch over the year to June 2011. Research literature identifies depression affecting a small but significant number of children one to two years post-disaster and points to increasing clinical and organisational demands for Māori and other residents of the city. For those residents in the eastern or coastal suburbs – home to many of the city’s Māori population - severe damage to housing, schools, shops, infrastructure, and streets has meant disruption to their lives, children’s schooling, employment, and community functioning. Ongoing abandonment of homes by many has meant a growing sense of unease and loss of security, exacerbated by arson, burglaries, increased drinking, a stalled local and national economy, and general confusion about the city’s future. Māori cultural resilience has enabled a considerable network of people, institutions, and resources being available to Māori , most noticeably through marae and their integral roles of housing, as a coordinating hub, and their arguing for the wider affected communities of Christchurch. Relevant disaster responses need to be discussed within whānau, kōhanga, kura, businesses, communities, and wider neighbourhoods. Comprehensive disaster management plans need to be drafted for all iwi in collaboration with central government, regional, and city or town councils. Overall, Māori are remarkably philosophical about the effects of the disaster, with many proudly relishing their roles in what is clearly a historic event of great significance to the city and country. Most believe that ‘being Māori’ has helped cope with the disaster, although for some this draws on a collective history of poverty and marginalisation, features that contribute to the vulnerability of Māori to such events. While the recovery and rebuild phases offer considerable options for Māori and iwi, with Ngāi Tahu set to play an important stakeholder in infrastructural, residential, and commercial developments, some risk and considerable unknowns are evident. Considerable numbers of Māori may migrate into the Canterbury region for employment in the rebuild, and trades training strategies have already been established. With many iwi now increasingly investing in property, the risks from significant earthquakes are now more transparent, not least to insurers and the reinsurance sector. Iwi authorities need to be appraised of insurance issues and ensure sufficient coverage exists and investments and developments are undertaken with a clear understanding of the risks from natural hazards and exposure to future disasters.
Background: We are in a period of history where natural disasters are increasing in both frequency and severity. They are having widespread impacts on communities, especially on vulnerable communities, those most affected who have the least ability to prepare or respond to a disaster. The ability to assemble and effectively manage Interagency Emergency Response Teams (IERTs) is critical to navigating the complexity and chaos found immediately following disasters. These teams play a crucial role in the multi-sectoral, multi-agency, multi-disciplinary, and inter-organisational response and are vital to ensuring the safety and well-being of vulnerable populations such as the young, aged, and socially and medically disadvantaged in disasters. Communication is key to the smooth operation of these teams. Most studies of the communication in IERTs during a disaster have been focussed at a macro-level of examining larger scale patterns and trends within organisations. Rarely found are micro-level analyses of interpersonal communication at the critical interfaces between collaborating agencies. This study set out to understand the experiences of those working at the interagency interfaces in an IERT set up by the Canterbury District Health Board to respond to the needs of the vulnerable people in the aftermath of the destructive earthquakes that hit Canterbury, New Zealand, in 2010-11. The aim of the study was to gain insights about the complexities of interpersonal communication (micro-level) involved in interagency response coordination and to generate an improved understanding into what stabilises the interagency communication interfaces between those agencies responding to a major disaster. Methods: A qualitative case study research design was employed to investigate how interagency communication interfaces were stabilised at the micro-level (“the case”) in the aftermath of the destructive earthquakes that hit Canterbury in 2010-11 (“the context”). Participant recruitment was undertaken by mapping which agencies were involved within the IERT and approaching representatives from each of these agencies. Data was collected via individual interviews using a semi-structured interview guide and was based on the “Critical Incident Technique”. Subsequently, data was transcribed verbatim and subjected to inductive analysis. This was underpinned theoretically by Weick’s “Interpretive Approach” and supported by Nvivo qualitative data analysis software. Results: 19 participants were interviewed in this study. Out of the inductive analysis emerged two primary themes, each with several sub-factors. The first major theme was destabilising/disruptive factors of interagency communication with five sub-factors, a) conflicting role mandates, b) rigid command structures, c) disruption of established communication structures, d) lack of shared language and understanding, and e) situational awareness disruption. The second major theme stabilising/steadying factors in interagency communication had four sub-factors, a) the establishment of the IERT, b) emergent novel communication strategies, c) establishment of a liaison role and d) pre-existing networks and relationships. Finally, there was a third sub-level identified during inductive analysis, where sub-factors from both primary themes were noted to be uniquely interconnected by emergent “consequences” arising out of the disaster context. Finally, findings were synthesised into a conceptual “Model of Interagency Communication at the Micro-level” based on this case study of the Canterbury earthquake disaster response. Discussion: The three key dimensions of The People, The Connections and The Improvisations served as a framework for the discussion of what stabilises interagency communication interfaces in a major disaster. The People were key to stabilising the interagency interfaces through functioning as a flexible conduit, guiding and navigating communication at the interagency interfaces and improving situational awareness. The Connections provided the collective competence, shared decision-making and prior established relationships that stabilised the micro-level communication at interagency interfaces. And finally, The Improvisations i.e., novel ideas and inventiveness that emerge out of rapidly changing post-disaster environments, also contributed to stabilisation of micro-level communication flows across interagency interfaces in the disaster response. “Command and control” hierarchical structures do provide clear processes and structures for teams working in disasters to follow. However, improvisations and novel solutions are also needed and often emerge from first responders (who are best placed to assess the evolving needs in a disaster where there is a high degree of uncertainty). Conclusion: This study highlights the value of incorporating an interface perspective into any study that seeks to understand the processes of IERTs during disaster responses. It also strengthens the requirement for disaster management frameworks to formally plan for and to allow for the adaptive responsiveness of local teams on the ground, and legitimise and recognise the improvisations of those in the role of emergent boundary spanners in a disaster response. This needs to be in addition to existing formal disaster response mechanisms. This study provides a new conceptual model that can be used to guide future case studies exploring stability at the interfaces of other IERTs and highlights the centrality of communication in the experiences of members of teams in the aftermath of a disaster. Utilising these new perspectives on stabilising communication at the interagency interfaces in disaster responses will have practical implications in the future to better serve the needs of vulnerable people who are at greatest risk of adverse outcomes in a disaster.
Following the 22nd February 2011, Mw 6.2 earthquake located along a previously unknown fault beneath the Port Hills of Christchurch, surface cracking was identified in contour parallel locations within fill material at Quarry Road on the lower slopes of Mount Pleasant. GNS Science, in the role of advisor to the Christchurch City Council, concluded that these cracks were a part of a potential rotational mass movement (named zone 11A) within the fill and airfall loess material present. However, a lack of field evidence for slope instability and an absence of laboratory geotechnical data on which slope stability analysis was based, suggested this conclusion is potentially incorrect. It was hypothesised that ground cracking was in fact due to earthquake shaking, and not mass movement within the slope, thus forming the basis of this study. Three soil units were identified during surface and subsurface investigations at Quarry Road: fill derived from quarry operations in the adjacent St. Andrews Quarry (between 1893 and 1913), a buried topsoil, and underlying in-situ airfall loess. The fill material was identified by the presence of organic-rich topsoil “clods” that were irregular in both size (∼10 – 200 mm) and shape, with variable thicknesses of 1 – 10 m. Maximum thickness, as indicated by drill holes and geophysical survey lines, was identified below 6 Quarry Road and 7 The Brae where it is thought to infill a pre-existing gully formed in the underlying airfall loess. Bearing strength of the fill consistently exceeded 300 kPa ultimate below ∼500 mm depth. The buried topsoil was 200 – 300 mm thick, and normally displayed a lower bearing strength when encountered, but not below 300 kPa ultimate (3 – 11 blows per 100mm or ≥100 kPa allowable). In-situ airfall loess stood vertically in outcrop due to its characteristic high dry strength and also showed Scala penetrometer values of 6 – 20+ blows per 100 mm (450 – ≥1000 kPa ultimate). All soils were described as being moist to dry during subsurface investigations, with no groundwater table identified during any investigation into volcanic bedrock. In-situ moisture contents were established using bulk disturbed samples from hand augers and test pitting. Average moisture contents were low at 9% within the fill, 11 % within the buried topsoil, and 8% within the airfall loess: all were below the associated average plastic limit of 17, 15, and 16, respectively, determined during Atterberg limit analysis. Particle size distributions, identified using the sieve and pipette method, were similar between the three soil units with 11 – 20 % clay, 62 – 78 % silt, and 11 – 20 % fine sand. Using these results and the NZGS soil classification, the loess derived fill and in-situ airfall loess are termed SILT with some clay and sand, and the buried topsoil is SILT with minor clay and sand. Dispersivity of the units was found using the Emerson crumb test, which established that the fill can be non- to completely dispersive (score 0 – 4). The buried topsoil was always non-dispersive (score 0), and airfall loess completely dispersive (score 4). Values for cohesion (c) and internal friction angle (φ) of the three soil units were established using the direct shear box at field moisture contents. Results showed all soil units had high shear strengths at the moisture contents tested (c = 18 – 24 kPa and φ = 42 – 50°), with samples behaving in a brittle fashion. Moisture content was artificially increased to 16% within the buried topsoil, which reduced the shear strength (c = 10 kPa, φ = 18°) and allowed it to behave plastically. Observational information indicating stability at Quarry Road included: shallow, discontinuous, cracks that do not display vertical offset; no scarp features or compressional zones typical of landsliding; no tilted or deformed structures; no movement in inclinometers; no basal shear zone identified in logged core to 20 m depth; low field moisture contents; no groundwater table; and high soil strength using Scala penetrometers. Limit equilibrium analysis of the slope was conducted using Rocscience software Slide 5.0 to verify the slope stability identified by observational methods. Friction, cohesion, and density values determined during laboratory were input into the two slope models investigated. Results gave minimum static factor of safety values for translational (along buried topsoil) and rotational (in the fill) slides of 2.4 – 4.2. Sensitivity of the slope to reduced shear strength parameters was analysed using c = 10 kPa and φ = 18° for the translational buried topsoil plane, and a cohesion of 0 kPa within the fill for the rotational plane. The only situation that gave a factor of safety <1.0 was in nonengineered fill at 0.5 m depth. Pseudostatic analysis based on previous peak ground acceleration (PGA) values for the Canterbury Earthquake Sequence, and predicted PGAs for future Alpine Fault and Hope Fault earthquakes established minimum factor of safety values between 1.2 and 3.3. Yield acceleration PGAs were computed to be between 0.8g and 1.6g. Based on all information gathered, the cracking at Quarry Road is considered to be shallow deformation in response to earthquake shaking, and not due to deep-seated landsliding. It is recommended that the currently bare site be managed by smoothing the land, installing contour drainage, and bioremediation of the surface soils to reduce surface water infiltration and runoff. Extensive earthworks, including removal of the fill, are considered unnecessary. Any future replacement of housing would be subject to site-specific investigations, and careful foundation design based on those results.
Questions to Ministers 1. Dr RUSSEL NORMAN to the Minister of Finance: What is the cost impact for the Earthquake Commission following Friday's High Court decision, and what now is the total cost to the Crown of the Canterbury earthquakes? 2. PESETA SAM LOTU-IIGA to the Minister of Finance: What steps has the Government taken to build a more competitive, export-focused economy? 3. Hon PHIL GOFF to the Prime Minister: Does he stand by his statement that "New Zealand simply can't afford a future where 20 percent of our workforce does not have the skills necessary for modern jobs"? 4. TIM MACINDOE to the Minister of Health: What was the average annual increase in elective discharges from 2000/2001 to 2007/2008, and how does this compare to the average annual increase in elective discharges over the last three financial years? 5. Hon PHIL GOFF to the Prime Minister: Does he stand by his statement in relation to part-privatisation of State-owned assets that "there will be some wholesale investors from overseas who will want to buy a little bit of these shares"? 6. KEITH LOCKE to the Minister of Defence: Was he briefed as to the presence of United States personnel at the Provincial Reconstruction Team base in Bamiyan and their duties; if so, what are the duties of the United States personnel at Bamiyan? 7. Hon ANNETTE KING to the Prime Minister: Does he stand by all his answers to Oral Question No 1 on 16 August 2011? 8. NIKKI KAYE to the Minister of Transport: What progress has the Government made on improving Auckland's commuter rail network? 9. Hon DAVID CUNLIFFE to the Minister of Finance: If he expects at least 85 to 90 percent of the State-owned assets he intends to privatise would remain in New Zealand's ownership, including the Crown's holding, what percent of the shares he plans to sell would be bought by foreign buyers? 10. NICKY WAGNER to the Minister of Education: What recent announcements has she made regarding trades academies? 11. Hon DAVID PARKER to the Acting Minister of Energy and Resources: Does she stand by the Government's decision to require Meridian Energy to sell some of its hydro-electricity dams on the Waitaki River to Genesis Energy, and how have the proceeds of the sale been used? 12. JONATHAN YOUNG to the Minister of Corrections: What reports has she received about efforts to cut re-offending rates and rehabilitate offenders? Questions to Members 1. CLARE CURRAN to the Chairperson of the Transport and Industrial Relations Committee: Has he requested any submissions of evidence about the petition to the Transport and Industrial Relations Committee signed by nearly 14,000 people calling on the Government to retain the Hillside and Woburn workshops?
While societal messages can encourage an unhealthy strive for perfection, the notion of embracing individual flaws and openly displaying vulnerabilities can appear foreign and outlandish. However, when fallibility is acknowledged and imperfection embraced, intimate relationships built on foundations of acceptance, trust and understanding can be established. In an architectural context, similar deep-rooted connections can be formed between a people and a place through the retention of layers of historical identity. When a building is allowed to age with blemishes laid bare for all to see, an architectural work can exhibit a sense of 'humanising vulnerability' where the bruises and scars it bears are able to visually communicate its contextual narrative. This thesis explores the notion of designing to capitalise on past decay through revitalisation of the former Wood Brothers Flour Mill in Addington, Christchurch (1891). Known as one of the city's last great industrial buildings, the 130-year-old structure remains hugely impressive due to its sheer size and scale despite being abandoned and subject to vandalism for a number of years. Its condition of obsolescence ensured the retention of visible signs of wear and tear in addition to the extensive damage caused by the 2010-12 Canterbury earthquakes. In offering a challenge to renovation and reconstruction as a means of conservation, this thesis asks if 'doing less' has the potential to 'do more'. How can an understanding of architecture as an ongoing process inform a design approach to celebrate ageing and patina? While the complex is undergoing redevelopment at the time of writing, the design project embraces the condition of the historic buildings in the immediate aftermath of the earthquakes and builds upon the patina of the mill and adjacent flour and grain store in developing a design for their adaptation as a micro-distillery. Research into the traditional Japanese ideology of wabi-sabi and its practical applications form the basis for a regenerative design approach which finds value in imperfection, impermanence and incompleteness. The thesis combines a literature review, precedent review and site analysis together with a design proposal. This thesis shows that adaptive reuse projects can benefit from an active collaboration with the processes of decay. Instead of a mindset where an architectural work is considered the finished article upon completion of construction, an empathetic and sensitive design philosophy is employed in which careful thought is given to the continued preservation and evolution of a structure with the recognition that evidence of past wear, tear, patina and weathering can all contribute positively to a building's future. In this fashion, rather than simply remaining as relics of the past, buildings can allow the landscape of their urban context to shape and mould them to ensure that their architectural experience can continue to be enjoyed by generations to come.
The New Zealand Kellogg Rural Leaders Programme develops emerging agribusiness leaders to help shape the future of New Zealand agribusiness and rural affairs. Lincoln University has been involved with this leaders programme since 1979 when it was launched with a grant from the Kellogg Foundation, USA.At 4.35am on 4th September 2010, Canterbury was hit by an earthquake measuring 7.1 on the Richter scale. On 22nd February 2011 and 13th June 2011 a separate fault line approximately 35km from the first, ruptured to inflict two further earthquakes measuring 6.3 and 6.0 respectively. As a direct result of the February earthquake, 181 people lost their lives. Some commentators have described this series of earthquakes as the most expensive global insurance event of all time. These earthquakes and the more than 7000 associated aftershocks have had a significant physical impact on parts of Canterbury and virtually none on others. The economic, social and emotional impacts of these quakes spread across Canterbury and beyond. Waimakariri district, north of Christchurch, has reflected a similar pattern, with over 1400 houses requiring rebuild or substantial repair, millions of dollars of damage to infrastructure, and significant social issues as a result. The physical damage in Waimakiriri District was predominately in parts of Kaiapoi, and two small beach settlements, The Pines and Kairaki Beach with pockets elsewhere in the district. While the balance of the district is largely physically untouched, the economic, social, and emotional shockwaves have spread across the district. Waimakariri district consists of two main towns, Rangiora and Kaiapoi, a number of smaller urban areas and a larger rural area. It is considered mid-size in the New Zealand local government landscape. This paper will explore the actions and plans of Waimakiriri District Council (WDC) in the Emergency Management Recovery programme to provide context to allow a more detailed examination of the planning processes prior to, and subsequent to the earthquakes. This study looked at documentation produced by WDC, applicable legislation and New Zealand Emergency Management resources and other sources. Key managers and elected representatives in the WOC were interviewed, along with a selection of governmental and nongovernmental agency representatives. The interview responses enable understanding of how central Government and other local authorities can benefit from these lessons and apply them to their own planning. It is intended that this paper will assist local government organisations in New Zealand to evaluate their planning processes in light of the events of 2010/11 in Canterbury and the lessons from WDC.
On 14 November 2016, a magnitude (Mw) 7.8 earthquake struck the small coastal settlement of Kaikōura, Aotearoa-New Zealand. With an economy based on tourism, agriculture, and fishing, Kaikōura was immediately faced with significant logistical, economic, and social challenges caused by damage to critical infrastructure and lifelines, essential to its main industries. Massive landslips cut offroad and rail access, stranding hundreds of tourists, and halting the collection, processing and distribution of agricultural products. At the coast, the seabed rose two metres, limiting harbour-access to high tide, with implications for whale watching tours and commercial fisheries. Throughout the region there was significant damage to homes, businesses, and farmland, leaving owners and residents facing an uncertain future. This paper uses qualitative case study analysis to explore post-quake transformations in a rural context. The aim is to gain insight into the distinctive dynamics of disaster response mechanisms, focusing on two initiatives that have emerged in direct response to the disaster. The first examines the ways in which agriculture, food harvesting, production and distribution are being reimagined with the potential to enhance regional food security. The second examines the rescaling of power in decision-making processes following the disaster, specifically examining the ways in which rural actors are leveraging networks to meet their needs and the consequences of that repositioning on rural (and national) governance arrangements. In these and other ways, the local economy is being revitalised, and regional resilience enhanced through diversification, capitalising not on the disaster but the region's natural, social, and cultural capital. Drawing on insights and experience of local stakeholders, policy- and decision-makers, and community representatives we highlight the diverse ways in which these endeavours are an attempt to create something new, revealing also the barriers which needed to be overcome to reshape local livelihoods. Results reveal that the process of transformation as part of rural recovery must be grounded in the lived reality of local residents and their understanding of place, incorporating and building on regional social, environmental, and economic characteristics. In this, the need to respond rapidly to realise opportunities must be balanced with the community-centric approach, with greater recognition given to the contested nature of the decisions to be made. Insights from the case examples can inform preparedness and recovery planning elsewhere, and provide a rich, real-time example of the ways in which disasters can create opportunities for reimagining resilient futures.
Following the Canterbury earthquake sequence of 2010-11, a large and contiguous tract of vacated ‘red zoned’ land lies alongside the lower Ōtākaro / Avon River and is known as the Avon-Ōtākaro Red Zone (AORZ). This is the second report in the Ecological Regeneration Options (ERO) project that addresses future land uses in the AORZ. The purpose of this report is to present results from an assessment of restoration opportunities conducted in April 2017. The objectives of the assessment were to identify potential benefits of ecological restoration activities across both land and water systems in the AORZ and characterise the key options for their implementation. The focus of this report is not to provide specific advice on the methods for achieving specific restoration endpoints per se. This will vary at different sites and scales with a large number of combinations possible. Rather, the emphasis is on providing an overview of the many restoration and regeneration options in their totality across the AORZ. An additional objective is to support their adequate assessment in the identification of optimum land uses and adaptive management practices for the AORZ. Participatory processes may play a useful role in assessment and stakeholder engagement by providing opportunities for social learning and the co-creation of new knowledge. We used a facilitated local knowledge based approach that generated a large quantity of reliable and site specific data in a short period of time. By inviting participation from a wide knowledge-holder network inclusivity is improved in comparison to small-group expert panel approaches. Similar approaches could be applied to other information gathering and assessment needs in the regeneration planning process. Findings from this study represent the most comprehensive set of concepts available to date to address the potential benefits of ecological regeneration in the AORZ. This is a core topic for planning to avoid missed opportunities and opportunity costs. The results identify a wide range of activities that may be applied to generate benefits for Christchurch and beyond, all involving aspects of a potential new ecology in the AORZ. These may be combined at a range of scales to create scenarios, quantify benefits, and explore the potential for synergies between different land use options. A particular challenge is acquiring the information needed within relatively short time frames. Early attention to gathering baseline data, addressing technical knowledge gaps, and developing conceptual frameworks to account for the many spatio-temporal aspects are all key activities that will assist in delivering the best outcomes. Methodologies by which these many facets can be pulled together in quantitative and comparative assessments are the focus of the final report in the ERO series.
A Transitional Imaginary: Space, Network and Memory in Christchurch is the outcome and the record of a particular event: the coming together of eight artists and writers in Ōtautahi Christchurch in November 2015, with the ambitious aim to write a book collaboratively over five days. The collaborative process followed the generative ‘book sprint’ method founded by our facilitator for the event, Adam Hyde, who has long been immersed in digital practices in Aotearoa. A book sprint prioritises the collective voice of the participants and reflects the ideas and understandings that are produced at the time in which the book was written, in a plurality of perspectives. Over one hundred books have been completed using the sprint methodology, covering subjects from software documentation to reflections on collaboration and fiction. We chose to approach writing about Ōtautahi Christchurch through this collaborative process in order to reflect the complexity of the post-quake city and the multiple paths to understanding it. The city has itself been a space of intensive collaboration in the post-disaster period. A Transitional Imaginary is a raw and immediate record, as much felt expression as argued thesis. In many ways the process of writing had the character of endurance performance art. The process worked by honouring the different backgrounds of the participants, allowing that dialogue and intensity could be generative of different forms of text, creating a knowledge that eschews a position of authority, working instead to activate whatever anecdotes, opinions, resources and experiences are brought into discussion. This method enables a dynamic of voices that merge here, separate there and interrupt elsewhere again. As in the contested process of rebuilding and reimagining Christchurch itself, the dissonance and counterpoint of writing reflects the form of conversation itself. This book incorporates conflict, agreement and the activation of new ideas through cross-fertilisation to produce a new reading of the city and its transition. The transitional has been given a specific meaning in Christchurch. It is a product of local theorising that encompasses the need for new modes of action in a city that has been substantially demolished (Bennett & Parker, 2012). Transitional projects, such as those created by Gap Filler, take advantage of the physical and social spaces created by the earthquake through activating these as propositions for new ways of being in the city. The transitional is in motion, looking towards the future. A Transitional Imaginary explores the transitional as a way of thinking and how we understand the city through art practices, including the digital and in writing.
This thesis explores the discussions and perspectives of Christchurch secondary school students in regards to their particular experiences and engagement with Anzac. In this thesis I seek to rigorously and robustly examine these viewpoints through semi-structured focus group interviews and thematic analysis. I seek to situate these youth perspectives within wider debates around Anzac mythology and Anzac resurgence in New Zealand which often do not represent the youth outlook. These debates are seen, on the one hand, to present a resurgence of youth engagement with Anzac and, on the other hand, to present the idea that Anzac has become an exclusionary myth which distorts Australians’ and New Zealanders’ understanding of wider Anzac experiences and educates them in a narrow, militarised way. Youth engagement with Anzac was not something which could be solely situated under either of these debates and, instead, it was seen to be multifaceted and made up of unique ideas and elements. The youth in my study acknowledged that their Anzac education did have mythic elements which made it hard for them to engage with Anzac despite the fact that they were actually interested in learning and understanding it. These mythic elements were the idea that Anzac is taught as a ‘simple narrative’ which does not allow room for critique, that it emphasises a link between Anzac and national identity, that it disregards many alternative Anzac experiences and that it presents a particular New Zealand identity to internalise. These students responded to their mythic Anzac education in a very active way, and instead of accepting it as truth, they were able to have constructive and critical conversations about their education and push against parts of it which they found to be too narrow or skewed in particular directions based on gender, ethnicity and national identity. The students were not passive vessels which internalised their Anzac education as fact; instead, they were able to acknowledge the mythic elements of their education and its negative influence in the classroom. This thesis went further in exploring what factors were seen to enhance this active process of critique and provide students with alternative knowledge and perspectives about Anzac. These factors were ancestral ties to Anzac, research into personal Anzac stories and experiences, unassessed educational units, centenary discussions, an understanding of hardship through the earthquakes and alternative perspectives of the Anzac experience through access to the internet. These factors presented a broader understanding of Anzac perspectives and experiences and students believed that if the mythic elements of their education could be revised and these elements encouraged then their engagement with Anzac would continue long into the future.
Smart cities utilise new and innovative technology to improve the function of the city for governments, citizens and businesses. This thesis offers an in-depth discussion on the concept of the smart city and sets the context of smart cities internationally. It also examines how to improve a smart city through public engagement, as well as, how to implement participatory research in a smart city project to improve the level of engagement of citizens in the planning and implementation of smart projects. This thesis shows how to incentivise behaviour change with smart city technology and projects, through increasing participation in the planning and implementation of smart technology in a city. Meaningful data is created through this process of participation for citizens in the city, by engaging the citizens in the creation of the data, therefore the information created through a smart city project is created by and for the citizens themselves. To improve engagement, a city must understand its specific context and its residents. Using Christchurch, New Zealand, and the Christchurch City Council (CCC) Smart City Project as a case study, this research engages CCC stakeholders in the Smart City Project through a series of interviews, and citizens in Christchurch through a survey and focus groups. A thorough literature review has been conducted, to illuminate the different definitions of the smart city in academia, business and governments respectively, and how these definitions vary from one another. It provides details of a carefully selected set of relevant smart cities internationally and will discuss how the Christchurch Earthquake Sequence of 2010 and 2011 has affected the CCC Smart City Project. The research process, alongside the literature review, shows diverse groups of citizens in the city should be acknowledged in this process. The concept of the smart city is redefined to incorporate the context of Christchurch, its citizens and communities. Community perceptions of smart cities in Christchurch consider the post-disaster environment and this event and subsequent rebuild process should be a focus of the smart city project. The research identified that the CCC needs to focus on participatory approaches in the planning and implementation of smart projects, and community organisations in Christchurch offer an opportunity to understand community perspectives on new smart technology and that projects internationally should consider how the context of the city will affect the participation of its residents. This project offers ideas to influence the behaviour change of citizens through a smart city project. Further research should consider other stakeholders, for instance, innovation and technology-focused business in the city, and to fully engage citizens, future research must continue the process of participatory engagement, and target diverse groups in the city, including but not limited to minority groups, older and younger generations, and those with physical and mental disabilities.
This study investigates evidence for linkages and fault interactions centred on the Cust Anticline in Northwest Canterbury between Starvation Hill to the southwest and the Ashley and Loburn faults to the northeast. An integrated programme of geologic, geomorphic, paleo-seismic and geophysical analyses was undertaken owing to a lack of surface exposures and difficulty in distinguishing active tectonic features from fluvial and/or aeolian features across the low-relief Canterbury Plains. LiDAR analysis identified surface expression of several previously unrecognised active fault traces across the low-relief aggradation surfaces of the Canterbury Plains. Their presence is consistent with predictions of a fault relay exploiting the structural mesh across the region. This is characterised by interactions of northeast-striking contractional faults and a series of re-activating inherited Late Cretaceous normal faults, the latter now functioning as E–W-striking dextral transpressive faults. LiDAR also allowed for detailed analysis of the surface expression of individual faults and folds across the Cust Anticline contractional restraining bend, which is evolving as a pop-up structure within the newly established dextral shear system that is exploiting the inherited, now re-activated, basement fault zone. Paleo-seismic trenches were located on the crest of the western arm of the Cust Anticline and across a previously unrecognised E–W-striking fault trace, immediately southwest of the steeply plunging Cust Anticline termination. These studies confirmed the location and structural style of north-northeast-striking faults and an E–W-striking fault associated with the development of this structural culmination. A review of available industry seismic reflection lines emphasised the presence of a series of common structural styles having the same underlying structural drivers but with varying degrees of development and expression, both in the seismic profiles and in surface elevations across the study area. Based on LiDAR surface mapping and preliminary re-analysis of industry seismic reflection data, four fault zones are identified across the restraining bend structural culminations, which together form the proposed Oxford–Cust–Ashley Fault System. The 2010–2012 Canterbury Earthquake Sequence showed many similarities to the structural pattern established across the Oxford–Cust–Ashley Fault System, emphasising the importance of identification and characterization of presently hidden fault sources, and the understanding of fault network linkages, in order to improve constraints on earthquake source potential. Improved understanding of potentially-interactive fault sources in Northwest Canterbury, with the potential for combined initial fault rupture and spatial and temporal rupture propagation across this fault system, can be used in probabilistic seismic hazard analysis for the region, which is essential for the suitability and sustainability of future social and economic development.
The Canterbury Region is susceptible to a variety of natural hazards, including earthquakes, landslides and climate hazards. Increasing population and tourism within the region is driving development pressures and as more and more development occurs, the risk from natural hazards increases. In order to avoid development occurring in unacceptably vulnerable locations, natural hazard assessments are required. This study is a reconnaissance natural hazard assessment of Lakes Lyndon, Coleridge and Tekapo. There is restricted potential for development at Lake Lyndon, because the land surrounding the lake is owned by the Crown and has a number of development restrictions. However, there is the potential for conservation or recreation-linked development to occur. There is more potential for development at Lake Coleridge. Most of the land surrounding the lake is privately owned and has less development restrictions. The majority of land surrounding Lake Tekapo is divided into Crown-owned pastoral leases, which are protected from development, such as subdivision. However, there are substantial areas around the lake, which are privately owned and, therefore, have potential for development. Earthquake, landslide and climate hazards are the main natural hazards threatening Lakes Lyndon, Coleridge and Tekapo. The lakes are situated in a zone of active earth deformation in which large and relatively frequent earthquakes are produced. A large number of active faults lie within 15 km of each lake, which are capable of producing M7 or larger earthquakes. Ground shaking, liquefaction, landslides, tsunami and seiches are among the consequences of earthquakes, all of which have the potential to cause severe damage to lives, lifelines and infrastructure. Landslides are also common in the landscape surrounding the lakes. The majority of slopes surrounding the lakes are at significant risk from earthquake-induced failure under moderate to strong earthquake shaking. This level of shaking is expected to occur in any 50 year period around Lakes Lyndon and Coleridge, and in any 150 year period around Lake Tekapo. Injuries, fatalities and property damage can occur directly from landslide impact or from indirect effects such as flooding from landslide-generated tsunami or from landslide dam outbreaks. Lakes Lyndon, Coleridge and Tekapo are also susceptible to climate hazards, such as high winds, drought, heavy snowfall and heavy rainfall, which can lead to landslides and flooding. Future climate change due to global warming is most likely going to affect patterns of frequency and magnitudes of extreme weather events, leading to an increase in climate hazards. Before development is permitted around the lakes, it is essential that each of these hazards is considered so that unacceptably vulnerable areas can be avoided.
Mitigating the cascade of environmental damage caused by the movement of excess reactive nitrogen (N) from land to sea is currently limited by difficulties in precisely and accurately measuring N fluxes due to variable rates of attenuation (denitrification) during transport. This thesis develops the use of the natural abundance isotopic composition of nitrate (δ15N and δ18O of NO₃-) to integrate the spatialtemporal variability inherent to denitrification, creating an empirical framework for evaluating attenuation during land to water NO₃- transfers. This technique is based on the knowledge that denitrifiers kinetically discriminate against 'heavy' forms of both N and oxygen (O), creating a parallel enrichment in isotopes of both species as the reaction progresses. This discrimination can be quantitatively related to NO₃- attenuation by isotopic enrichment factors (εdenit). However, while these principles are understood, use of NO₃- isotopes to quantify denitrification fluxes in non-marine environments has been limited by, 1) poor understanding of εdenit variability, and, 2) difficulty in distinguishing the extent of mixing of isotopically distinct sources from the imprint of denitrification. Through a combination of critical literature analysis, mathematical modelling, mesocosm to field scale experiments, and empirical studies on two river systems over distance and time, these short comings are parametrised and a template for future NO₃- isotope based attenuation measurements outlined. Published εdenit values (n = 169) are collated in the literature analysis presented in Chapter 2. By evaluating these values in the context of known controllers on the denitrification process, it is found that the magnitude of εdenit, for both δ15N and δ18O, is controlled by, 1) biology, 2) mode of transport through the denitrifying zone (diffusion v. advection), and, 3) nitrification (spatial-temporal distance between nitrification and denitrification). Based on the outcomes of this synthesis, the impact of the three factors identified as controlling εdenit are quantified in the context of freshwater systems by combining simple mathematical modelling and lab incubation studies (comparison of natural variation in biological versus physical expression). Biologically-defined εdenit, measured in sediments collected from four sites along a temperate stream and from three tropical submerged paddy fields, varied from -3‰ to -28‰ depending on the site’s antecedent carbon content. Following diffusive transport to aerobic surface water, εdenit was found to become more homogeneous, but also lower, with the strength of the effect controlled primarily by diffusive distance and the rate of denitrification in the sediments. I conclude that, given the variability in fractionation dynamics at all levels, applying a range of εdenit from -2‰ to -10‰ provides more accurate measurements of attenuation than attempting to establish a site-specific value. Applying this understanding of denitrification's fractionation dynamics, four field studies were conducted to measure denitrification/ NO₃- attenuation across diverse terrestrial → freshwater systems. The development of NO₃- isotopic signatures (i.e., the impact of nitrification, biological N fixation, and ammonia volatilisation on the isotopic 'imprint' of denitrification) were evaluated within two key agricultural regions: New Zealand grazed pastures (Chapter 4) and Philippine lowland submerged rice production (Chapter 5). By measuring the isotopic composition of soil ammonium, NO₃- and volatilised ammonia following the bovine urine deposition, it was determined that the isotopic composition of NO₃ - leached from grazed pastures is defined by the balance between nitrification and denitrification, not ammonia volatilisation. Consequently, NO₃- created within pasture systems was predicted to range from +10‰ (δ15N)and -0.9‰ (δ18O) for non-fertilised fields (N limited) to -3‰ (δ15N) and +2‰ (δ18O) for grazed fertilised fields (N saturated). Denitrification was also the dominant determinant of NO₃- signatures in the Philippine rice paddy. Using a site-specific εdenit for the paddy, N inputs versus attenuation were able to be calculated, revealing that >50% of available N in the top 10 cm of soil was denitrified during land preparation, and >80% of available N by two weeks post-transplanting. Intriguingly, this denitrification was driven by rapid NO₃- production via nitrification of newly mineralised N during land preparation activities. Building on the relevant range of εdenit established in Chapters 2 and 3, as well as the soil-zone confirmation that denitrification was the primary determinant of NO₃- isotopic composition, two long-term longitudinal river studies were conducted to assess attenuation during transport. In Chapter 6, impact and recovery dynamics in an urban stream were assessed over six months along a longitudinal impact gradient using measurements of NO₃- dual isotopes, biological populations, and stream chemistry. Within 10 days of the catastrophic Christchurch earthquake, dissolved oxygen in the lowest reaches was <1 mg l⁻¹, in-stream denitrification accelerated (attenuating 40-80% of sewage N), microbial biofilm communities changed, and several benthic invertebrate taxa disappeared. To test the strength of this method for tackling the diffuse, chronic N loading of streams in agricultural regions, two years of longitudinal measurements of NO₃- isotopes were collected. Attenuation was negatively correlated with NO₃- concentration, and was highly dependent on rainfall: 93% of calculated attenuation (20 kg NO₃--N ha⁻¹ y⁻¹) occurred within 48 h of rainfall. The results of these studies demonstrate the power of intense measurements of NO₃- stable isotope for distinguishing temporal and spatial trends in NO₃ - loss pathways, and potentially allow for improved catchment-scale management of agricultural intensification. Overall this work now provides a more cohesive understanding for expanding the use of NO₃- isotopes measurements to generate accurate understandings of the controls on N losses. This information is becoming increasingly important to predict ecosystem response to future changes, such the increasing agricultural intensity needed to meet global food demand, which is occurring synergistically with unpredictable global climate change.
TRACEY MARTIN to the Minister responsible for Novopay: Does he stand by his statement of 11 February 2014, "education payroll is the most complex in New Zealand and more work remains to be done to simplify the business processes to ensure it runs as smoothly as possible each year"? Hon DAVID CUNLIFFE to the Prime Minister: Does he stand by his statement that "the true builders of that future are the millions of New Zealanders working in the homes, the businesses, the industries of our country"? MAGGIE BARRY to the Minister of Finance: What progress is the Government making with its share offer programme, which is freeing up money for reinvestment in new public assets without having to increase Government debt? ANDREW LITTLE to the Attorney-General: Will he release all correspondence between the Christchurch Crown Solicitor or any other solicitor acting for the Ministry of Business, Innovation and Employment, and counsel for Peter Whittall on the decision not to proceed with the prosecution of Mr Whittall under the Health and Safety in Employment Act 1992 relating to conditions at the Pike River Mine that lead to the deaths of 29 miners; if not, why not? KEVIN HAGUE to the Minister of Health: When were Ministry of Health officials first informed that the dispute between the Southern District Health Board and South Link Health involved allegations of the misuse of public funding, and when were they first informed that this alleged misuse was suspected to involve elements that could be fraud? Dr CAM CALDER to the Minister for Tertiary Education, Skills and Employment: What announcements has the Government made on the Tertiary Education Strategy for New Zealand? Hon RUTH DYSON to the Minister responsible for the Earthquake Commission: Does he stand by his statement made yesterday in the House with regard to Canterbury Labour Members of Parliament that they "have made no more than five requests for assistance through the Earthquake Commission"; if not, when will he be correcting his statement and apologising? MARK MITCHELL to the Minister for Communications and Information Technology: How is the Government's Information and Communication Technology programme improving New Zealanders' access to improved technology and better connectivity? GRANT ROBERTSON to the Minister of Justice: On what date did she receive an invitation to visit the Shanghai office of Oravida Ltd during her Ministerial visit to China in October 2013, and what actions did she take to ensure this visit met her obligations under the Cabinet Manual? CATHERINE DELAHUNTY to the Associate Minister of Education: Did the communities in Christchurch, Auckland and Queenstown, where four schools are to be built using a public-private partnership (PPP) model, ask the Government for private sector management of their school buildings? PAUL FOSTER-BELL to the Minister of Health: What investment is the Government making in improving nutrition and exercise for pre-schoolers? JOANNE HAYES to the Minister of Corrections: What steps has the Government taken to improve access to alcohol and drug treatment for prisoners?
Brooklands Lagoon / Te Riu o Te Aika Kawa (‘Brooklands’) is an important wetland and estuarine ecosystem in Canterbury. It is a site of cultural significance to Ngāi Tūāhuriri, and is also valued by the wider community. Home to an array of life, it is connected to the Pūharakekenui/Styx and Waimakariri rivers, and is part of a wetland landscape complex that includes the Avon-Heathcote / Ihutai estuary to the south and the Ashley / Rakahuri estuary to the north. Notionally situated within the territorial boundary of Christchurch City Council and jurisdictionally encompassed by the regional council Environment Canterbury, it has been legally determined to be part of the coastal marine area. The complicated administrative arrangements for the lagoon mirror the biophysical and human challenges to this surprisingly young ecosystem since its formation in 1940. Here we present a synthesis of the historical events and environmental influences that have shaped Brooklands Lagoon. Before existing as an intertidal ecosystem, the Waimakariri river mouth was situated in what is now the southern end of the lagoon. A summary timeline of key events is set out in the table below. These included the diversion of the Waimakariri River mouth via the construction of Wrights Cut in the 1930s, which influenced the way that the lower reaches of the river interacted with the land and sea. A large flood in 1940 shifted the river mouth ~2 to 3 kilometres north, that created the landscape that we see today. However, this has not remained stable, as the earthquake sequence in 2010 and 2011 subsided the bed of the estuary. The changes are ongoing, as sea level rise and coastal inundation will place ongoing pressure on the aquatic ecosystem and surrounding land. How to provide accommodation space for Brooklands as an estuary will be a key planning and community challenge, as Environment Canterbury begins the engagement for the review of its Regional Coastal Plan. There is also a requirement to safeguard its ecological health under the 2020 National Policy Statement on Freshwater Management. This will necessitate an integrated mountains to sea (ki uta ki tai) management approach as the lagoon is affected by wider catchment activities. We hope that this report will contribute to, and inform these processes by providing a comprehensive historical synthesis, and by identifying considerations for the future collaborative management of Brooklands Lagoon, and protection of its values. In essence, we suggest that Te Riu o Te Aika Kawa deserves some sustained aroha.
<b>New Zealand has experienced several strong earthquakes in its history. While an earthquake cannot be prevented from occurring, planning can reduce its consequences when it does occur. This dissertation research examines various aspects of disaster risk management policy in Aotearoa New Zealand.</b> Chapter 2 develops a method to rank and prioritise high-rise buildings for seismic retrofitting in Wellington, the earthquake-prone capital city of New Zealand. These buildings pose risks to Wellington’s long-term seismic resilience that are of clear concern to current and future policymakers. The prioritization strategy we propose, based on multi-criteria decision analysis (MCDA) methods, considers a variety of data on each building, including not only its structural characteristics, but also its location, its economic value to the city, and its social importance to the community around it. The study demonstrates how different measures, within four general criteria – life safety, geo-spatial location of the building, its economic role, and its socio-cultural role – can be operationalized into a viable framework for determining retrofitting/demolition policy priorities. Chapter 3 and chapter 4 analyse the Residential Red Zone (RRR) program that was implemented in Christchurch after the 2011 earthquake. In the program, approximately 8,000 homeowners were told that their homes were no longer permittable, and they were bought by the government (through the Canterbury Earthquake Recovery Authority). Chapter 3 examines the subjective wellbeing of the RRR residents (around 16000 people) after they were forced to move. We consider three indicators of subjective wellbeing: quality of life, stress, and emotional wellbeing. We found that demographic factors, health conditions, and the type of government compensation the residents accepted, were all significant determinants of the wellbeing of the Red Zone residents. More social relations, better financial circumstances, and the perception of better government communication were also all associated positively with a higher quality of life, less stress, and higher emotional wellbeing. Chapter 4 concentrates on the impact of this managed retreat program on RRR residents’ income. We use individual-level comprehensive, administrative, panel data from Canterbury, and difference in difference evaluation method to explore the effects of displacement on Red Zone residential residents. We found that compared to non-relocated neighbours, the displaced people experience a significant initial decrease in their wages and salaries, and their total income. The impacts vary with time spent in the Red Zone and when they moved away. Wages and salaries of those who were red-zoned and moved in 2011 were reduced by 8%, and 5.4% for those who moved in 2012. Females faced greater decreases in wages and salaries, and total income, than males. There were no discernible impacts of the relocation on people’s self-employment income.