Search

found 835 results

Research papers, University of Canterbury Library

Well-validated liquefaction constitutive models are increasingly important as non-linear time history analyses become relatively more common in industry for key projects. Previous validation efforts of PM4Sand, a plasticity model specifically for liquefaction, have generally focused on centrifuge tests; however, pore pressure transducers installed at several free-field sites during the Canterbury Earthquake Sequence (CES) in Christchurch, New Zealand provide a relatively unique dataset to validate against. This study presents effective stress site response analyses performed in the finite difference software FLAC to examine the capability of PM4Sand to capture the generation of excess pore pressures during earthquakes. The characterization of the subsurface is primarily based on extensive cone penetration tests (CPT) carried out in Christchurch. Correlations based on penetration resistances are used to estimate soil parameters, such as relative density and shear wave velocity, which affect liquefaction behaviour. The resulting free-field FLAC model is used to estimate time histories of excess pore pressure, which are compared with records during several earthquakes in the CES to assess the suitability of PM4Sand.

Research papers, Lincoln University

Indigenous Peoples retain traditional coping strategies for disasters despite the marginalisation of many Indigenous communities. This article describes the response of Māori to the Christchurch earthquakes of 2010 and 2012 through analyses of available statistical data and reports, and interviews done three months and one year after the most damaging event. A significant difference between Māori and ‘mainstream’ New Zealand was the greater mobility enacted by Māori throughout this period, with organisations having roles beyond their traditional catchments throughout the disaster, including important support for non-Māori. Informed engagement with Indigenous communities, acknowledging their internal diversity and culturally nuanced support networks, would enable more efficient disaster responses in many countries.

Research papers, University of Canterbury Library

Heathcote Valley school strong motion station (HVSC) consistently recorded ground motions with higher intensities than nearby stations during the 2010-2011 Canterbury earthquakes. For example, as shown in Figure 1, for the 22 February 2011 Christchurch earthquake, peak ground acceleration at HVSC reached 1.4 g (horizontal) and 2 g (vertical), the largest ever recorded in New Zealand. Strong amplification of ground motions is expected at Heathcote Valley due to: 1) the high impedance contrast at the soil-rock interface, and 2) the interference of incident and surface waves within the valley. However, both conventional empirical ground motion prediction equations (GMPE) and the physics-based large scale ground motions simulations (with empirical site response) are ineffective in predicting such amplification due to their respective inherent limitations.

Research papers, University of Canterbury Library

Many buildings with relatively low damage from the 2010-2011 Canterbury were deemed uneconomic to repair and were replaced [1,2]. Factors that affected commercial building owners’ decisions to replace rather than repair, included capital availability, uncertainty with regards to regional recovery, local market conditions and ability to generate cash flow, and repair delays due to limited property access (cordon). This poster provides a framework for modeling decision-making in a case where repair is feasible but replacement might offer greater economic value – a situation not currently modeled in engineering risk analysis.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Canterbury Provincial Chambers Buildings on Durham Street. Large sections of the masonry have collapsed, spilling onto the road. Wire fencing has been placed around the building as a cordon. Scaffolding erected up the side of the building after the 4 September 2010 earthquake has collapsed. In the distance, a crane is parked on the street.

Images, eqnz.chch.2010

Shipping containers against the cliff on the road to Sumner, Christchurch. File reference: CCL-2012-05-12-Around-Sumner-May-2012 DSC_012.JPG From the collection of Christchurch City Libraries.

Images, UC QuakeStudies

A worker in a high visibility vest and a hard hat repairing and strengthening the outside of a building at the University of Canterbury. The photograph has been captioned by BeckerFraserPhotos, "The repair work on the buildings at the University of Canterbury looks similar to the scenes in the CBD".

Articles, UC QuakeStudies

A report created by the University of Canterbury Quake Centre and the University of Auckland, funded by the Building Research Levy. It shows how an innovation process was initiated and managed throughout the rebuilding of the horizontal infrastructure after the Canterbury earthquakes.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Canterbury Provincial Chambers. The top section of the building has crumbled, taking the scaffolding with it. Wire fencing has been placed around the building as a cordon.

Research papers, University of Canterbury Library

The operation of telecommunication networks is critical during business as usual times, and becomes most vital in post-disaster scenarios, when the services are most needed for restoring other critical lifelines, due to inherent interdependencies, and for supporting emergency and relief management tasks. In spite of the recognized critical importance, the assessment of the seismic performance for the telecommunication infrastructure appears to be underrepresented in the literature. The FP6 QuakeCoRE project “Performance of the Telecommunication Network during the Canterbury Earthquake Sequence” will provide a critical contribution to bridge this gap. Thanks to an unprecedented collaboration between national and international researchers and highly experienced asset managers from Chorus, data and evidences on the physical and functional performance of the telecommunication network after the Canterbury Earthquakes 2010-2011 have been collected and collated. The data will be processed and interpreted aiming to reveal fragilities and resilience of the telecommunication networks to seismic events

Research papers, University of Canterbury Library

Knowing how to rapidly rebuild disaster-damaged infrastructure, while deciding appropriate recovery strategies and catering for future investment is a matter of core interest to government decision makers, utility providers, and business sectors. The purpose of this research is to explore the effects of decisions and outcomes for physical reconstruction on the overall recovery process of horizontal infrastructure in New Zealand using the Canterbury and Kaikoura earthquakes as cases. A mixed approach including a systematic review, questionnaire survey and semi-structured interviews is used to capture perspectives of those involved in reconstruction process and gain insights into the effect of critical elements on infrastructure downtime. Findings from this research will contribute towards advancements of a systems dynamics model considering critical decision-making variables across phases of the reconstruction process to assess how these variables affect the rebuild process and the corresponding downtime. This project will improve the ability to explore alternative resilience improvement pathways and test the efficacy of alternative means for facilitating a faster and better reconstruction process.

Images, UC QuakeStudies

A photograph of an earthquake-damaged suitcase in the South Quad of the Christchurch Arts Centre. The suitcase is resting on a pile of scaffolding which had been constructed around the Observatory tower. The scaffolding collapsed along with the tower during the 22 February 2011 earthquake.