Search

found 1026 results

Images, UC QuakeStudies

Members of the USAID Disaster Assistance Response Team (DART) and New Zealand Urban Search and Rescue breaking through the floor of a building which was severely damaged during the 22 February 2011 earthquake.

Images, UC QuakeStudies

Members of the USAID Disaster Assistance Response Team (DART) and New Zealand Urban Search and Rescue breaking through the floor of a building which was severely damaged during the 22 February 2011 earthquake.

Research papers, University of Canterbury Library

Existing unreinforced masonry (URM) buildings are often composed of traditional construction techniques, with poor connections between walls and diaphragms that results in poor performance when subjected to seismic actions. In these cases the application of the common equivalent static procedure is not applicable because it is not possible to assure “box like” behaviour of the structure. In such conditions the ultimate strength of the structure relies on the behaviour of the macro-elements that compose the deformation mechanisms of the whole structure. These macroelements are a single or combination of structural elements of the structure which are bonded one to each other. The Canterbury earthquake sequence was taken as a reference to estimate the most commonly occurring collapse mechanisms found in New Zealand URM buildings in order to define the most appropriate macroelements.