A story submitted by Donna to the QuakeStories website.
A story submitted by Jo Reid to the QuakeStories website.
A story submitted by Sarah to the QuakeStories website.
A story submitted by Barry Ramsay to the QuakeStories website.
A story submitted by Kate Bennett to the QuakeStories website.
A story submitted by Anna Cotterrell to the QuakeStories website.
A story submitted by Kathryn to the QuakeStories website.
A story submitted by Kerri to the QuakeStories website.
A story submitted by Maureen Wootton to the QuakeStories website.
A story submitted by Bill Thew to the QuakeStories website.
A story submitted by Francis Ganderton to the QuakeStories website.
A story submitted by Anonymous to the QuakeStories website.
A story submitted by Lucinda to the QuakeStories website.
A story submitted by Allie to the QuakeStories website.
A story submitted by Marian Parkin to the QuakeStories website.
A story submitted by Lisa Gibson to the QuakeStories website.
A colour photograph showing details of the damage to the facade of the Clarendon Hotel following the 22 February 2011 earthquake.
Child standing beside a damaged building on Colombo Street, with the Copthorne Hotel and Forsyth Barr buildings in the background.
A colour photograph detailing damage to the northwest corner of the former PGG Building at 178 Cashel Street.
Damage to the Dolls House night club and the Coffee Queen cafe on Gloucester Street, beside Chancery Lane.
Transcript of Eric's earthquake story, captured by the UC QuakeBox project.
Transcript of Jacqui's earthquake story, captured by the UC QuakeBox project.
Transcript of Lorraine's earthquake story, captured by the UC QuakeBox project.
Transcript of Roman's earthquake story, captured by the UC QuakeBox project.
Transcript of Lorraine Savory's earthquake story, captured by the UC QuakeBox project.
Transcript of John Brownie's earthquake story, captured by the UC QuakeBox project.
Transcript of Audrey Read's earthquake story, captured by the UC QuakeBox project.
High demolition rates were observed in New Zealand after the 2010-2011 Canterbury Earthquake Sequence despite the success of modern seismic design standards to achieve required performance objectives such as life safety and collapse prevention. Approximately 60% of the multi-storey reinforced concrete (RC) buildings in the Christchurch Central Business District were demolished after these earthquakes, even when only minor structural damage was present. Several factors influenced the decision of demolition instead of repair, one of them being the uncertainty of the seismic capacity of a damaged structure. To provide more insight into this topic, the investigation conducted in this thesis evaluated the residual capacity of moderately damaged RC walls and the effectiveness of repair techniques to restore the seismic performance of heavily damaged RC walls. The research outcome provided insights for developing guidelines for post-earthquake assessment of earthquake-damaged RC structures. The methodology used to conduct the investigation was through an experimental program divided into two phases. During the first phase, two walls were subjected to different types of pre-cyclic loading to represent the damaged condition from a prior earthquake, and a third wall represented a repair scenario with the damaged wall being repaired using epoxy injection and repair mortar after the pre-cyclic loading. Comparisons of these test walls to a control undamaged wall identified significant reductions in the stiffness of the damaged walls and a partial recovery in the wall stiffness achieved following epoxy injection. Visual damage that included distributed horizontal and diagonal cracks and spalling of the cover concrete did not affect the residual strength or displacement capacity of the walls. However, evidence of buckling of the longitudinal reinforcement during the pre-cyclic loading resulted in a slight reduction in strength recovery and a significant reduction in the displacement capacity of the damaged walls. Additional experimental programs from the literature were used to provide recommendations for modelling the response of moderately damaged RC walls and to identify a threshold that represented a potential reduction in the residual strength and displacement capacity of damaged RC walls in future earthquakes. The second phase of the experimental program conducted in this thesis addressed the replacement of concrete and reinforcing steel as repair techniques for heavily damaged RC walls. Two walls were repaired by replacing the damaged concrete and using welded connections to connect new reinforcing bars with existing bars. Different locations of the welded connections were investigated in the repaired walls to study the impact of these discontinuities at the critical section. No significant changes were observed in the stiffness, strength, and displacement capacity of the repaired walls compared to the benchmark undamaged wall. Differences in the local behaviour at the critical section were observed in one of the walls but did not impact the global response. The results of these two repaired walls were combined with other experimental programs found in the literature to assemble a database of repaired RC walls. Qualitative and quantitative analyses identified trends across various parameters, including wall types, damage before repair, and repair techniques implemented. The primary outcome of the database analysis was recommendations for concrete and reinforcing steel replacement to restore the strength and displacement capacity of heavily damaged RC walls.
Damage to Lyttelton following the 22 February 2011 earthquake. Forbes' Store on Norwich Quay with a broken awning and damage visible on the brick walls. Scaffolding placed around the building since the 4 September 2010 earthquake has tumbled during the 22 February 2011 earthquake.
Damage to Lyttelton following the 22 February 2011 earthquake. Forbes' Store on Norwich Quay with a broken awning and damage visible on the brick walls. Scaffolding placed around the building since the 4 September 2010 earthquake has tumbled during the 22 February 2011 earthquake.