Verandah roof of former Central Library on left. Rubble is from the former Farmers building and carpark.
Conversations between one-time residents of an historic riverside community - in the 1970s the late Elsie Locke and Rod Donald helped to create one of Christchurch's strongest riverside communities. The Avon Loop now subject to post earthquake re-classifation and demolition.
People cast flowers into the Avon River during the River of Flowers event held in Riccarton Bush, commemorating the second anniversary of the 22 February earthquake. In the background is the string quartet from Christchurch Girls High School which played before the event.
A woman casts flowers into the Avon River during the River of Flowers event held in Riccarton Bush, commemorating the second anniversary of the 22 February earthquake. In the background is the string quartet from Christchurch Girls High School which played before the event.
People cast flowers into the Avon River during the River of Flowers event held in Riccarton Bush, commemorating the second anniversary of the 22 February earthquake. In the background is the string quartet from Christchurch Girls High School which played before the event.
People cast flowers into the Avon River during the River of Flowers event held in Riccarton Bush, commemorating the second anniversary of the 22 February earthquake. In the background is the string quartet from Christchurch Girls High School which played before the event.
It's been revealed earthquake damage was only one factor considered by the Ministry of Education when it decided to close schools in Christchurch and that it was just as much to do with reducing the overall number of schools in the city.
None
A video of Lianne Dalziel speaking to a public gathering about her reasons for standing for the mayoralty of Christchurch. Dalziel talks about starting her mayoralty where Share an Idea left off, making the Council a high performing team, and getting the community involved in the decisions about the future of the city. The video also includes footage of Dalziel taking a tour of the Christchurch central city. Dalziel visits the ChristChurch Cathedral, pointing out a sign which reads, "The earthquakes stopped us, but inept procedures are killing us". She also visits the new Westende Jewellers building, which she notes was the first rebuild in the Christchurch central city but will come down as part of CERA's Transport Plan. Dalziel is shown socialising with members of the public and watching the Christchurch Wizard bless New Regent Street.
Two projects are documented within this MEM Report: I. The first project examined what was learnt involving the critical infrastructure in the aftermath of natural disasters in the Canterbury region of New Zealand – the most prominent being the series of earthquakes between 2010 and 2011. The project identified several learning gaps, leading to recommendations for further investigations that could add significant value for the lifeline infrastructure community. II. Following the Lifeline Lesson Learnt Project, the Disaster Mitigation Guideline series was initiated with two booklets, one on Emergency Potable Water and a second on Emergency Sanitation. The key message from both projects is that we can and must learn from disasters. The projects described are part of the emergency management, and critical infrastructure learning cycles – presenting knowledge captured by others in a digestible format, enabling the lessons to be reapplied. Without these kinds of projects, there will be fewer opportunities to learn from other’s successes and failures when it comes to preparing for natural disasters.
A video of an interview with Shaun Gladwell, a London-based artist, about the sculptures he designed for the Christchurch central city. Gladwell talks about how the sculptures are based on skateboard forms and have been designed to be used by skateboarders. He also talks about being inspired by YouTube videos of Christchurch skateboarders who used the damaged landscape in Christchurch as a skate park after the 22 February 2011 earthquake. The video includes clips from some of these YouTube videos.
Lincoln University was commissioned by the Avon-Otakaro Network (AvON) to estimate the value of the benefits of a ‘recreation reserve’ or ‘river park’ in the Avon River Residential Red Zone (ARRRZ). This research has demonstrated significant public desire and support for the development of a recreation reserve in the Avon River Residential Red Zone. Support is strongest for a unique natural environment with native fauna and flora, healthy wetlands and rivers, and recreational opportunities that align with this vision, such as walking, cycling and water-based sporting and leisure activities. The research also showed support for a reserve that promotes and enables community interaction and wellbeing, and is evident in respondents’ desires for community gardens, regular festivals and markets, and the physical linking of the CBD with eastern suburbs through a green corridor. There is less support for children’s playgrounds, sports fields or open grassed areas, all of which could be considered as more typical of an urban park development. Benefits (willing to pay) to Christchurch residents (excluding tourists) of a recreation reserve could be as high as $35 million each year. Savings to public health costs could be as high as $50.3 million each year. The incorporation or restoration of various ecosystems services, including water quality improvements, flood mitigation and storm water management could yield a further $8.8 million ($19, 600) per hectare/year at 450 ha). Combined annual benefits of a recreational reserve in the ARRRZ are approximately $94.1 million per annum but this figure does not include potentially significant benefits from, for example, tourism, property equity gains in areas adjacent to the reserve, or the effects of economic rejuvenation in the East. Although we were not able to provide costing estimates for park attributes, this study does make available the value of benefits, which can be used as a guide to the scope of expenditure on development of each park attribute.
This paper provides a summary of the ground motions observed in the recent Canterbury, New Zealand earthquake sequence. The sequence occurred in a region of relatively moderate seismicity, 130km to the east of the Alpine Fault, the major plate-boundary in the region. From an engineering perspective, the sequence has been primarily comprised of the initial 04/09/2010 Darfield earthquake (Mw7.1) followed by the 22/02/2011 Christchurch earthquake (Mw6.3), and two aftershocks on 13/06/ 2011 (Mw5.3 and 6.0, respectively). The dense spacing of strong motions in the region, and their close proximity to the respective causative faults, has resulted in strong ground motions far exceeding the previous catalogue of strong motion observed in New Zealand. The observed ground motions have exhibited clear evidence of: (i) near-source directivity; (ii) sedimentary basin focusing, amplification and basin effect refraction; (iii) non-linear site response; (iv) cyclic mobility postliquefaction; and (v) extreme vertical ground motions exceeding 2g, among others.
The earthquake swarm that has struck Canterbury, New Zealand from September 2010 has led to widespread destruction and loss of life in the city of Christchurch. In response to this the New Zealand government convened a Royal Commission under the Commissions of Inquiry Act 1908. The terms of reference for this enquiry were wide ranging, and included inquiry into legal and best-practice requirements for earthquake-prone buildings and associated risk management strategies. The Commission produced a final report on earthquake-prone buildings and recommendations which was made public on the 7th December 2012. Also on the 7th of December 2012 the Ministry of Business, Innovation and Employment (MBIE) released a Consultation Document that includes many of the recommendations put forward by the Royal Commission. This paper examines the evidence presented to the Royal Commission and reviews their recommendations and those of MBIE in relation to the management of earthquake-prone buildings. An analysis of the likely impacts of the recommendations and proposals on both the property market and society in general is also undertaken.
The Mw 6.2 February 22nd 2011 Christchurch earthquake (and others in the 2010-2011 Canterbury sequence) provided a unique opportunity to study the devastating effects of earthquakes first-hand and learn from them for future engineering applications. All major events in the Canterbury earthquake sequence caused widespread liquefaction throughout Christchurch’s eastern suburbs, particularly extensive and severe during the February 22nd event. Along large stretches of the Avon River banks (and to a lesser extent along the Heathcote) significant lateral spreading occurred, affecting bridges and the infrastructure they support. The first stage of this research involved conducting detailed field reconnaissance to document liquefaction and lateral spreading-induced damage to several case study bridges along the Avon River. The case study bridges cover a range of ages and construction types but all are reinforced concrete structures which have relatively short, stiff decks. These factors combined led to a characteristic deformation mechanism involving deck-pinning and abutment back-rotation with consequent damage to the abutment piles and slumping of the approaches. The second stage of the research involved using pseudo-static analysis, a simplified seismic modelling tool, to analyse two of the bridges. An advantage of pseudo-static analysis over more complicated modelling methods is that it uses conventional geotechnical data in its inputs, such as SPT blowcount and CPT cone resistance and local friction. Pseudo-static analysis can also be applied without excessive computational power or specialised knowledge, yet it has been shown to capture the basic mechanisms of pile behaviour. Single pile and whole bridge models were constructed for each bridge, and both cyclic and lateral spreading phases of loading were investigated. Parametric studies were carried out which varied the values of key parameters to identify their influence on pile response, and computed displacements and damages were compared with observations made in the field. It was shown that pseudo-static analysis was able to capture the characteristic damage mechanisms observed in the field, however the treatment of key parameters affecting pile response is of primary importance. Recommendations were made concerning the treatment of these governing parameters controlling pile response. In this way the future application of pseudo-static analysis as a tool for analysing and designing bridge pile foundations in liquefying and laterally spreading soils is enhanced.
Cathedral of the Blessed Sacrameny aka Christchurch Basilica
Another city walk around, this time with my brother-in-law from Auckland. Also went to the Quake City exhibition in the city organised by the Canterbury Museum. First fine day for a while. This bus is used as a chocolate restaurant, and is parked next to the Pallet Pavilion on the site of the old Park Royal Hotel.
When this building was first brought on site I spent a few hours removing the tape/paper that had been covering every window.
One in Five is in Christchurch to meet elderly residents in some of the areas worst hit by the earthquakes. In these suburbs, a series of exercise classes is providing a lifeline for locals who are increasingly confined to their immediate areas. The classes, which are run by Therapy Professionals for Arthritis New Zealand, offer improved mobility to those living with the condition but also companionship and support in a stressful time. Those taking part talked to Katy Gosset about aging with a disability and coping with life after the earthquakes.
Awaiting demolition
Whole document is available to authenticated members of The University of Auckland until Feb. 2014. The increasing scale of losses from earthquake disasters has reinforced the need for property owners to become proactive in seismic risk reduction programs. However, despite advancement in seismic design methods and legislative frameworks, building owners are often reluctant to adopt mitigation measures required to reduce earthquake losses. The magnitude of building collapses from the recent Christchurch earthquakes in New Zealand shows that owners of earthquake prone buildings (EPBs) are not adopting appropriate risk mitigation measures in their buildings. Owners of EPBs are found unwilling or lack motivation to adopt adequate mitigation measures that will reduce their vulnerability to seismic risks. This research investigates how to increase the likelihood of building owners undertaking appropriate mitigation actions that will reduce their vulnerability to earthquake disaster. A sequential two-phase mixed methods approach was adopted for the research investigation. Multiple case studies approach was adopted in the first qualitative phase, followed by the second quantitative research phase that includes the development and testing of a framework. The research findings reveal four categories of critical obstacles to building owners‘ decision to adopt earthquake loss prevention measures. These obstacles include perception, sociological, economic and institutional impediments. Intrinsic and extrinsic interventions are proposed as incentives for overcoming these barriers. The intrinsic motivators include using information communication networks such as mass media, policy entrepreneurs and community engagement in risk mitigation. Extrinsic motivators comprise the use of four groups of incentives namely; financial, regulatory, technological and property market incentives. These intrinsic and extrinsic interventions are essential for enhancing property owners‘ decisions to voluntarily adopt appropriate earthquake mitigation measures. The study concludes by providing specific recommendations that earthquake risk mitigation managers, city councils and stakeholders involved in risk mitigation in New Zealand and other seismic risk vulnerable countries could consider in earthquake risk management. Local authorities could adopt the framework developed in this study to demonstrate a combination of incentives and motivators that yield best-valued outcomes. Consequently, actions can be more specific and outcomes more effective. The implementation of these recommendations could offer greater reasons for the stakeholders and public to invest in building New Zealand‘s built environment resilience to earthquake disasters.
Demolition of the support structure for NZ Breweries smokestack in Christchurch. CERES NZ's nibbler is at work, the pipe stack having been removed yesterday (Saturday). I retuned three hours later to see what progress had been made and it was GONE! See next photo. Damage to complex was from the 22/02/20011 earthquake.
Shows John Key phoning Canterbury Earthquake Recovery Minister Gerry Brownlee during his recent visit to China. Key tells Gerry he has found an architect friend in China who can design the new Christchurch Cathedral. Wider context refers to the debate over the 3 plans recently released for the Cathedral, but also refers to media debate concerning Key's involvement in instances of preferential appointments - in particular, his claim to have forgotten a phone call to his friend Ian Fletcher in which Key suggested Fletcher should apply to become director of the Government Communications Security Bureau. See Stuff, 3 April 2013. Colour and black and white versions available Quantity: 2 digital cartoon(s).
A video about the earthquake damage to the Christchurch Town Hall. The video shows footage of a tour through the inside of the Town Hall, recorded on a GoPro camera. It also includes interviews with Councillor Glenn Livingstone and Councillor Tim Carter about their impressions of the damage and the work that will be needed to fix the building.
Specially designed sleeping boxes originally made to keep babies safe during the Christchurch earthquakes are now being used for vulnerable infants in South Auckland. The little beds are called "Pepi-Pods" and they're being given to families with babies that might be susceptible to cot death.
The debt stricken state-owned enterprise Solid energy is in crisis talks with the Treasury and its banks, two years after the Christchurch earthquakes, insurance companies are blamed for delays in the rebuild, and in dateline pacific Papua New Guinea is building up its military to build roads.
Haha! This is the day before Mainzeal (see sign on fence at left) announced they had gone into receivership owing millions to the banks and sub-contractors like Smiths whose equipment is here.
Another city walk around, this time with my brother-in-law from Auckland. Also went to the Quake City exhibition in the city organised by the Canterbury Museum. First fine day for a while. For 36 years I worked in a now gone building where that red car is parked (on the left). and would have walked this route thousands of times, yet now it is...
The statue of Captain Cook looks over an empty Victoria Square with autumn leaves lying around. This used to be a very tidy and busy area, but is now nearly all fenced off. Pedestrian access to this section was established about five or six months ago.
Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/2013-2/