Search

found 756 results

Images, UC QuakeStudies

A snapshot from GPS Boomerang's SmartBird flight over the Christchurch red zone on 23 December 2012, looking over Victoria Square with the Forsyth Barr Building and the Victoria Apartments visible. The PriceWaterHouseCoopers Building has been demolished.

Images, UC QuakeStudies

A photograph of a spray-painted message on a fence reading, "4 sale - handy mans dream. Mild reno's needed. Easy indoor/outdoor flow - with water feature!" The photograph is captioned by Paul Corliss, "New Brighton by QEII Drive".

Images, UC QuakeStudies

People walking amongst silt in Hagley Park shortly after the 22 February 2011 earthquake. These silt deposits were caused by the soil liquefying during the 22 February 2011 earthquake. The water flowed out, bringing sand with it.

Images, UC QuakeStudies

A photograph of a spray-painted message on a fence reading, "4 sale - handy mans dream. Mild reno's needed. Easy indoor/outdoor flow - with water feature!" The photograph is captioned by Paul Corliss, "New Brighton by QEII Drive".

Images, UC QuakeStudies

A photograph of a spray-painted message on a fence reading, "4 sale - handy mans dream. Mild reno's needed. Easy indoor/outdoor flow - with water feature!" The photograph is captioned by Paul Corliss, "New Brighton by QEII Drive".

Images, UC QuakeStudies

A cycle-lane sign submerged in water. The photographer comments, "During the Christchurch earthquake this sign must have dropped off of the pedestrian bridge above and landed straight down into the Avon River".

Images, UC QuakeStudies

Workers use a large water-blasting pipe to clear blocked drains. The photographer comments, "The Australian company Barry Bros Turned up very late at night to clean out our street drains of liquefaction".

Images, UC QuakeStudies

A photograph of children participating in a water calligraphy workshop as part of Emerge Poetica project. This event was part of FESTA 2014 and included a floating poetry installation on the Avon River.

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.

Articles, UC QuakeStudies

A copy of a letter from Hugo Kristinsson which was sent to Helen Beaumont, Manager of the Natural Environment and Heritage Unit at the Christchurch City Council, on 17 June 2014. The letter was sent on behalf of Empowered Christchurch. It is about legislation which, according to Kristinsson, determines land below the mean high water spring to be public land. Kristinsson is concerned that this legislation will cause 'hundred or even thousands' of people to lose their assets. He urges the Council to 'have the land surveyed and to redefine the CMA [Crown Minerals Act] before land claims are settled'.

Research papers, University of Canterbury Library

This is an interim report from the research study performed within the NHRP Research Project “Impacts of soil liquefaction on land, buildings and buried pipe networks: geotechnical evaluation and design, Project 3: Seismic assessment and design of pipe networks in liquefiable soils”. The work presented herein is a continuation of the comprehensive study on the impacts of Christchurch earthquakes on the buried pipe networks presented in Cubrinovski et al. (2011). This report summarises the performance of Christchurch City’s potable water, waste water and road networks through the 2010-2011 Canterbury Earthquake Sequence (CES), and particularly focuses on the potable water network. It combines evidence based on comprehensive and well-documented data on the damage to the water network, detailed observations and interpretation of liquefaction-induced land damage, records and interpretations of ground motion characteristics induced by the Canterbury earthquakes, for a network analysis and pipeline performance evaluation using a GIS platform. The study addresses a range of issues relevant in the assessment of buried networks in areas affected by strong earthquakes and soil liquefaction. It discusses performance of different pipe materials (modern flexible pipelines and older brittle pipelines) including effects of pipe diameters, fittings and pipeline components/details, trench backfill characteristics, and severity of liquefaction. Detailed breakdown of key factors contributing to the damage to buried pipes is given with reference to the above and other relevant parameters. Particular attention is given to the interpretation, analysis and modelling of liquefaction effects on the damage and performance of the buried pipe networks. Clear link between liquefaction severity and damage rate for the pipeline has been observed with an increasing damage rate seen with increasing liquefaction severity. The approach taken here was to correlate the pipeline damage to LRI (Liquefaction Resistance Index, newly developed parameter in Cubrinovski et al., 2011) which represents a direct measure for the soil resistance to liquefaction while accounting for the seismic demand through PGA. Key quality of the adopted approach is that it provides a general methodology that in conjunction with conventional methods for liquefaction evaluation can be applied elsewhere in New Zealand and internationally. Preliminary correlations between pipeline damage (breaks km-1), liquefaction resistance (LRI) and seismic demand (PGA) have been developed for AC pipes, as an example. Such correlations can be directly used in the design and assessment of pipes in seismic areas both in liquefiable and non-liquefiable areas. Preliminary findings on the key factors for the damage to the potable water pipe network and established empirical correlations are presented including an overview of the damage to the waste water and road networks but with substantially less detail. A comprehensive summary of the damage data on the buried pipelines is given in a series of appendices.

Images, Alexander Turnbull Library

The cartoon shows a platter of 'Brownbait patties $2 per kilo'. In the background is a 'contaminated' river. Refers to the contamination of Canterbury's waterways after the earthquake of 4th September which resulted in sewage pipes being damaged thus contaminating the rivers. This means that people should not be attempting to catch whitebait in these rivers during the annual whitebait season which is open between 15 August and 30 November. Quantity: 1 digital cartoon(s).

Other, National Library of New Zealand

Site of SCIRT, an alliance between CERA, Christchurch City Council, the NZTA, and companies involved in the rebuild. Includes information about SCIRT; news; works notices; and information about damage assessment and rebuilding of roads, fresh water, wastewater and stormwater networks.

Audio, Radio New Zealand

One of the great community initiative's in Canterbury is the Rangiora Earthquake Express - where urgent help is still needed. These Rangiora volunteers have been up and running for sometime now, with daily runs into the Christchurch suburbs most desperately in need of water and other essential supplies.