Search

found 482 results

Images, UC QuakeStudies

A poster created by Empowered Christchurch to advertise their submission to the CERA Draft Transition Recovery Plan on social media.The poster reads, "Submission, CERA Draft Transition Recovery Plan. Future Insurability. In an article in the New Zealand Herald of 5 November 2014, the CEO of IAG refers to cooperation with the NZ Government on a strategic intent in 2011 to avoid depopulation of Christchurch. Now that the ICNZ has signalled its intention to withdraw from high-risk areas and the CCC also plans to redefine the boundaries of the city so as to exclude properties below the Mean High Water Springs. We ask whether a 'recovery' involves abandoning people once the insurance and bank sectors have managed a retreat? We need a city that is driven by the people that live in it, and enabled by a bureaucracy that accepts and mitigates risks, rather than transferring them to the most vulnerable of its residents".

Audio, Radio New Zealand

A review of the week's news including... Relief after cyclone Cook passes quickly down the North Island with limited damage, questions about what was known about the increasing risk of Edgecumbe stop banks bursting, the man who gave us Fred Dagg has died suddenly, three more former CERA staffers are being investigated after conflict of interests prompted calls for a wider inquiry, a warning more homeless families will be sleeping in cars parks and garages in Auckland this winter, the High Court rules excessive defamation damages against Colin Craig constitute a miscarriage of justice, a verdict in a defamation against the Labour leader Andrew Little, relatives of New Zealand soldiers killed on duty in South East Asia are relieved their family members will be finally returned home, US consumer campaigner Erin Brockovich visits Christchurch homeowners who are trying to settle earthquake insurance claims six years on, three teams have been cut from the Super Rugby competition and a more than 50 year old copper time capsule has been cracked open.

Research papers, University of Canterbury Library

In this paper, we perform hybrid broadband (0-10 Hz) ground motion simulations for the ten most significant events (Mw 4.7-7.1) in the 2010-2011 Canterbury earthquake sequence. Taking advantage of having repeated recordings at same stations, we validate our simulations using both recordings and an empirically-developed ground motion prediction equation (GMPE). The simulation clearly captures the sedimentary basin amplification and the rupture directivity effects. Quantitative comparisons of the simulations with both recordings and the GMPE, as well as analyses of the total residuals (indicating model bias) show that simulations perform better than the empirical GMPE, especially for long period. To scrutinize the ground motion variability, we partitioned the total residuals into different components. The total residual appears to be unbiased, and the use of a 3D velocity structure reduces the long period systematic bias particularly for stations located close to the Banks Peninsula volcanic area.

Audio, Radio New Zealand

DAVID SHEARER to the Prime Minister: Does he believe that Hon John Banks has behaved in a manner that “upholds, and is seen to uphold the highest ethical standards” as required by the Cabinet Manual? BARBARA STEWART to the Prime Minister: Did Mr Banks explain to the Prime Minister’s Chief of Staff that he would use “obfuscation” in his dealings with the media over the “anonymous” donations from Kim Dotcom? MAGGIE BARRY to the Minister of Finance: How does the Government intend to strengthen the Public Finance Act 1989 in the Budget this month? Hon DAVID PARKER to the Minister of Finance: In the most recent World Economic Outlook published by the IMF in April 2012, which of the 34 advanced economies listed is forecast to have a worse current account deficit (as a percentage of GDP) than New Zealand in 2013? METIRIA TUREI to the Prime Minister: Does he stand by all the answers he gave to Oral Question No 4 yesterday? KANWALJIT SINGH BAKSHI to the Minister for Economic Development: What action is the Government taking to improve co-ordination of the business growth agenda? Hon PHIL GOFF to the Minister of Foreign Affairs: What damage, if any, has been done to staff confidence and retention by the change proposals for his Ministry announced on 23 February 2012, and does he intend to announce on 10 May 2012 a reversal of many of the proposals? SIMON O'CONNOR to the Minister of Labour: What steps is the Government taking to improve workplace health and safety? GARETH HUGHES to the Minister of Conservation: Does her proposed extension of the Marine Mammal Sanctuary for Maui’s dolphins allow the use of set nets, drift nets, and trawl nets within the sanctuary? IAN McKELVIE to the Minister of Corrections: What reports has she received about trade training within prisons? Hon LIANNE DALZIEL to the Minister for Canterbury Earthquake Recovery: Has he required that all his Ministers involved in the Canterbury earthquake recovery read the briefing paper dated 10 May 2011 prepared by Chief Science Advisor, Professor Sir Peter Gluckman, into the psychosocial consequences of the Canterbury earthquakes; if not, why not? NIKKI KAYE to the Minister of Education: What evidence has she seen of excellent achievement in scholarship exams?  

Audio, Radio New Zealand

A review of the week's news, including... Maori across the country accepting a challenge set by the Maori King to battle the Government over water rights, the Government says Labour's new education policies are flawed, expensive and unnecessary while it's being accused of exploiting the Christchurch earthquakes to force through sweeping changes to schools in the city, Tuhoe is to get 170-million dollars in compensation and more control over Te Urewera National Park in its settlement with the Crown for historical grievances, hundreds of angry and stunned paper mill workers in Kawerau are in limbo over how many will lose their jobs with Norske Skog announcing its halving production, the shotputter Valerie Adams will receive her gold medal in a public ceremony in Auckland on Wednesday, details from of the police investigation into John Bank's mayoral campaign donations have been made public, a man who helped his chronically ill wife commit suicide has broken down in tears after being discharged without conviction and Invercargill has rolled out the red carpet in style, hosting the world premiere of New Zealand's latest feature film.

Audio, Radio New Zealand

1. Hon PHIL GOFF to the Prime Minister: Does he have confidence in his Minister of Finance? 2. CRAIG FOSS to the Minister of Finance: How much does the Government expect to spend over the next few years to help rebuild Christchurch in the aftermath of the two earthquakes? 3. Hon ANNETTE KING to the Minister for Social Development and Employment: Does she stand by her statement in regard to hardship assistance that "…I think it proves that the help is there when people need it,"; if so, why? 4. RAHUI KATENE to the Minister of Health: What action, if any, has been taken in light of the study Ethnicity and Management of Colon Cancer in New Zealand: Do Indigenous Patients Get a Worse Deal?, which concluded that Māori New Zealanders with colon cancer were less likely to receive adjuvant chemotherapy and experienced a lower quality of care compared with non-Māori patients? 5. CHRIS AUCHINVOLE to the Minister for the Environment: What steps is the Government taking to increase renewable electricity generation in light of reports that greenhouse gas emissions from this sector have increased by 120 percent, which is more than any other sector since 1990? 6. Hon CLAYTON COSGROVE to the Minister of Finance: Excluding the banks and non-bank financial institutions covered by the deposit guarantee scheme, are there any other companies that might be provided with a government guarantee while the Rt Hon John Key is Prime Minister? 7. JONATHAN YOUNG to the Acting Minister of Energy and Resources: What is Petrobras able to do under the permit granted to it in the Raukumara Basin? 8. DAVID CLENDON to the Acting Minister of Energy and Resources: What environmental protection provisions, if any, did the Government include in the permit granted to Petrobras to explore for oil and drill off the East Cape? 9. Hon TREVOR MALLARD to the Prime Minister: Does he have confidence in all Ministers involved in the Mediaworks frequency payment arrangement? 10. AARON GILMORE to the Minister of Revenue: What has Inland Revenue done to assist the people in Christchurch after the February earthquake? 11. GRANT ROBERTSON to the Minister responsible for Ministerial Services: Does he stand by his statements in relation to the purchase of 34 BMWs by Ministerial Services, including one with heated seats, that "Yeah I don't know what's in Dunedin" and "It's beyond me, it's not my car anyway"? 12. SHANE ARDERN to the Minister of Fisheries and Aquaculture: What has been the result of enforcement action taken by the Ministry of Fisheries under Operation Paid and Taskforce Webb?

Research Papers, Lincoln University

Akaroa is a small township situated within Akaroa Harbour, on the southern side of Banks Peninsula. It is approximately 75 kilometres, or 90 minutes by car, from Christchurch City. At the 2006 Census of Population and Dwellings, the ‘usually resident’ population of the township was 510 people. In addition to the usually resident population, Akaroa has a large number of non-resident property owners/ratepayers, many of whom own holiday homes. Many of these holiday homes are available as casual rentals (i.e., they may be occupied by people other than the property owners). The township acts as a service centre for the scattered population of the outer bays area of Akaroa Harbour, many of whom work in Akaroa. Akaroa is a popular day trip or short stay destination for Christchurch residents. Akaroa is also known as a destination which draws upon the French heritage of its pioneer settlers and the associated village charm derived from this heritage. Not unexpectedly, given the size and village character of Akaroa, the increase in cruise ship arrivals and passenger numbers has had an impact upon the town’s community.This research was commissioned and funded by Christchurch and Canterbury Tourism (CCT).

Research papers, University of Canterbury Library

The Canterbury earthquakes resulted in numerous changes to the waterways of Ōtautahi Christchurch. These included bank destabilisation, liquefaction effects, changes in bed levels, and associated effects on flow regimes and inundation levels. This study set out to determine if these effects had altered the location and pattern of sites utilised by īnanga (Galaxias maculatus) for spawning, which are typically restricted to very specific locations in upper estuarine areas. Extensive surveys were carried out in the Heathcote/Ōpāwaho and Avon/Ōtākaro catchments over the four peak months of the 2015 spawning season. New spawning sites were found in both rivers and analysis against pre-earthquake records identified that other significant changes have occurred. Major changes include the finding of many new spawning sites in the Heathcote/Ōpāwaho catchment. Sites now occur up to 1.5km further downstream than the previously reported limit and include the first records of spawning below the Woolston Cut. Spawning sites in the Avon/Ōtākaro catchment also occur in new locations. In the mainstem, sites now occur both upstream and downstream of all previously reported locations. A concentrated area of spawning was identified in Lake Kate Sheppard at a distinctly different location versus pre-quake records, and no spawning was found on the western shores. Spawning was also recorded for the first time in Anzac Creek, a nearby waterway connected to Lake Kate Sheppard via a series of culverts.

Research papers, University of Canterbury Library

A 3D high-resolution model of the geologic structure and associated seismic velocities in the Canterbury, New Zealand region is developed utilising data from depthconverted seismic reflection lines, petroleum and water well logs, cone penetration tests, and implicitly guided by existing contour maps and geologic cross sections in data sparse subregions. The model, developed using geostatistical Kriging, explicitly represents the significant and regionally recognisable geologic surfaces that mark the boundaries between geologic units with distinct lithology and age. The model is examined in the form of both geologic surface elevation contour maps as well as vertical cross sections of shear wave velocity, with the most prominent features being the Banks Peninsula Miocene-Pliocene volcanic edifice, and the Pegasus and Rakaia late Mesozoic-Neogene sedimentary basins. The adequacy of the modelled geologic surfaces is assessed through a residual analysis of point constraints used in the Kriging and qualitative comparisons with previous geologic models of subsets of the region. Seismic velocities for the lithological units between the geologic surfaces have also been derived, thus providing the necessary information for a Canterbury velocity model (CantVM) for use in physics-based seismic wave propagation. The developed model also has application for the determination of depths to specified shear wave velocities for use in empirical ground motion modelling, which is explicitly discussed via an example.

Research papers, University of Canterbury Library

We present initial results from a set of three-dimensional (3D) deterministic earthquake ground motion simulations for the northern Canterbury plains, Christchurch and the Banks Peninsula region, which explicitly incorporate the effects of the surface topography. The simu-lations are done using Hercules, an octree-based finite-element parallel software for solving 3D seismic wave propagation problems in heterogeneous media under kinematic faulting. We describe the efforts undertaken to couple Hercules with the South Island Velocity Model (SIVM), which included changes to the SIVM code in order to allow for single repetitive que-ries and thus achieve a seamless finite-element meshing process within the end-to-end ap-proach adopted in Hercules. We present our selection of the region of interest, which corre-sponds to an area of about 120 km × 120 km, with the 3D model reaching a depth of 60 km. Initial simulation parameters are set for relatively high minimum shear wave velocity and a low maximum frequency, which we are progressively scaling up as computing resources permit. While the effects of topography are typically more important at higher frequencies and low seismic velocities, even at this initial stage of our efforts (with a maximum of 2 Hz and a mini-mum of 500 m/s), it is possible to observe the importance of the topography in the response of some key locations within our model. To highlight these effects we compare the results of the 3D topographic model with respect to those of a flat (squashed) 3D model. We draw rele-vant conclusions from the study of topographic effects during earthquakes for this region and describe our plans for future work.

Research papers, University of Canterbury Library

Liquefaction is a phenomenon that results in a loss of strength and stability of a saturated soil mass due to dynamic excitation such as that imposed by an earthquake. The granular nature of New Zealand soils and the location of many of our cities and towns on fluvial foundations are such that the effects of liquefaction can be very important. Research was undertaken to build on the past work undertaken at the University of Canterbury studying the effects of the 1929 Murchison earthquake, the 1968 Inangahua earthquake and the 1991 Hawks Crag earthquakes on the West Coast. Additional archival information has been gathered from newspapers and reports and from discussions with people who experienced one or all of these large earthquakes that occurred on the West Coast during the 20th Century. Further, some twenty Cone Penetrometer Tests were carried out, with varying success, in Greymouth and Karamea using the Department of Civil Engineering's Drilling Rig. These, combined with the basic site investigation information, consolidate and add to the liquefaction case history data bank at the University of Canterbury. Many of the sites have liquefied in some but not all of the three earthquakes and thus provide both upper and lower bounds for the calibration of empirical models. While a lack of knowledge of the 1929 source location reduces the value of information from that event, the data form a useful set of liquefaction case histories and will become more so as further earthquakes occur. A list of critical sites for checking of the future earthquakes is provided and recommendations are made for the installation of downhole arrays of accelerometers and pore water pressure transducers at a number of sites.

Research papers, Victoria University of Wellington

The Mѡ=7.1 Darfield (Canterbury) earthquake struck on 4 September 2010, approximately 45 km west of Christchurch, New Zealand. It revealed a previously unknown fault (the Greendale fault) and caused billions of dollars of damage due to high peak ground velocities and extensive liquefaction. It also triggered the Mw=6.3 Christchurch earthquake on 22 February 2011, which caused further damage and the loss of 185 lives. The objective of this research was to determine the relationship between stress and seismic properties in a seismically active region using manually-picked P and S wave arrival times from the aftershock sequence between 8 September 2010-13 January 2011 to estimate shear-wave splitting (SWS) parameters, VP =VS-ratios, anisotropy (delay-time tomography), focal mechanisms, and tectonic stress on the Canterbury plains. The maximum horizontal stress direction was highly consistent in the plains, with an average value of SHmax=116 18 . However, the estimates showed variation in SHmax near the fault, with one estimate rotating by as much as 30° counter-clockwise. This suggests heterogeneity of stress at the fault, though the cause remains unclear. Orientations of the principal stresses predominantly indicate a strike-slip regime, but there are possible thrust regimes to the west and north/east of the fault. The SWS fast directions (ø) on the plains show alignment with SHmax at the majority of stations, indicating stress controlled anisotropy. However, structural effects appear more dominant in the neighbouring regions of the Southern Alps and Banks Peninsula.

Audio, Radio New Zealand

DAVID SHEARER to the Prime Minister: Does he stand by all his statements in relation to Kim Dotcom and the inquiry into the actions of the Government Communications Security Bureau? METIRIA TUREI to the Minister for Social Development: Does she have confidence that the Ministry of Social Development can keep private information it holds confidential? KATRINA SHANKS to the Minister of Finance: What are the main features of the Government's plan to build a more competitive economy based on more savings, higher exports and less debt? JACINDA ARDERN to the Minister for Social Development: Has the Ministry of Social Development competently managed the private information in its charge? Peseta SAM LOTU-IIGA to the Minister for Social Development: What children will the White Paper for Vulnerable Children be targeting? CHRIS HIPKINS to the Minister of Education: What specific criteria were used to determine whether a school in Christchurch was identified for restoration, consolidation or rejuvenation? Dr RUSSEL NORMAN to the Minister responsible for the GCSB: What were the dates of the three cases that the Government Communications Security Bureau audit highlighted, because they could not assure him "that the legal position is totally clear", as referred to in his statement of 3 October 2012? Rt Hon WINSTON PETERS to the Prime Minister: Does he stand by his answer to my Question for Written Answer 3326 (2012)? Hon LIANNE DALZIEL to the Minister of Civil Defence: Why did he reject the independent Civil Defence Emergency Management earthquake review's recommendation, which was made in response to the finding that duplication of control was "not only inefficient but put people and property at risk", and that "the same situation could arise in a number of different parts of New Zealand"? MIKE SABIN to the Minister of Veterans' Affairs: What is the Government doing to improve the support and recognition given to veterans? GRANT ROBERTSON to the Prime Minister: Does he have confidence in Hon John Banks; if so, why? NICKY WAGNER to the Minister responsible for the Earthquake Commission: What is the objective of the Government review of the EQC?

Audio, Radio New Zealand

Questions to Ministers 1. CRAIG FOSS to the Minister of Finance: What challenges does the Government face in putting together Budget 2011? 2. Dr RUSSEL NORMAN to the Prime Minister: Does he stand by his pre-Budget statement "The key sector which is not saving right now is the Government"; if so, what steps has he taken to increase government revenue? 3. Dr RUSSEL NORMAN to the Prime Minister: Does he stand by his statement "…we can use this time to transform the economy to make us stronger…"; if so, does this transformation involve an economy that uses fewer natural resources and produces less pollution? 4. Hon PHIL GOFF to the Prime Minister: Does he stand by all his statements on KiwiSaver? 5. NICKY WAGNER to the Minister for Canterbury Earthquake Recovery: What reports has he received on progress made to provide winter heating for residents affected by the Canterbury earthquakes? 6. Hon ANNETTE KING to the Prime Minister: What advice did he receive from the most recent food bank he visited about the current cost of living? 7. JACQUI DEAN to the Minister for the Environment: What practical initiatives is the Government taking in preparation for Rugby World Cup 2011 to protect the environment and New Zealand's important clean green brand? 8. Hon DAVID CUNLIFFE to the Minister of Finance: What was the annual rate of GDP growth for the year ended December 2010 projected in Budget 2010, and what was the actual rate of growth for that period according to Statistics New Zealand? 9. AARON GILMORE to the Minister of Education: What recent decisions have been made regarding schooling in Christchurch? 10. SUE MORONEY to the Minister of Education: When was construction completed on the new early childhood education centre at Weymouth Primary School and why is the centre empty? 11. COLIN KING to the Minister of Agriculture: What steps has the Government recently taken to support innovation in the Manuka honey industry? 12. CARMEL SEPULONI to the Minister of Justice: Does he stand by his statement "This Government is committed to ensuring that everyone…has access to justice"?

Research papers, The University of Auckland Library

This thesis presents an assessment of historic seismic performance of the New Zealand stopbank network from the 1968 Inangahua earthquake through to the 2016 Kaikōura earthquake. An overview of the types of stopbanks and the main aspects of the design and construction of earthen stopbanks was presented. Stopbanks are structures that are widely used on the banks of rivers and other water bodies to protect against the impact of flood events. Earthen stopbanks are found to be the most used for such protection measures. Different stopbank damage or failure modes that may occur due to flooding or earthquake excitation were assessed with a focus on past earthquakes internationally, and examples of these damage and failure modes were presented. Stopbank damage and assessment reports were collated from available reconnaissance literature to develop the first geospatial database of stopbank damage observed in past earthquakes in New Zealand. Damage was observed in four earthquakes over the past 50 years, with a number of earthquakes resulting in no stopbank damage. The damage database therefore focussed on the Edgecumbe, Darfield, Christchurch and Kaikōura earthquakes. Cracking of the crest and liquefaction-induced settlement were the most common forms of damage observed. To understand the seismic demand on the stopbank network in past earthquakes, geospatial analyses were undertaken to approximate the peak ground acceleration (PGA) across the stopbank network for ten large earthquakes that have occurred in New Zealand over the past 50 years. The relationship between the demand, represented by the peak ground acceleration (PGA) and damage is discussed and key trends identified. Comparison of the seismic demand and the distribution of damage suggested that the seismic performance of the New Zealand stopbank network has been generally good across all events considered. Although a significant length of the stopbank networks were exposed to high levels of shaking in past events, the overall damage length was a small percentage of this. The key aspect controlling performance was the performance of the underlying foundation soils and the effect of this on the stopbank structure and stability.

Research papers, University of Canterbury Library

This dissertation addresses a diverse range of topics in the area of physics-based ground motion simulation with particular focus on the Canterbury, New Zealand region. The objectives achieved provide the means to perform hybrid broadband ground motion simulation and subsequently validates the simulation methodology employed. In particu- lar, the following topics are addressed: the development of a 3D seismic velocity model of the Canterbury region for broadband ground motion simulation; the development of a 3D geologic model of the interbedded Quaternary formations to provide insight on observed ground motions; and the investigation of systematic effects through ground motion sim- ulation of small-to-moderate magnitude earthquakes. The paragraphs below outline each contribution in more detail. As a means to perform hybrid broadband ground motion simulation, a 3D model of the geologic structure and associated seismic velocities in the Canterbury region is devel- oped utilising data from depth-converted seismic reflection lines, petroleum and water well logs, cone penetration tests, and implicitly guided by existing contour maps and geologic cross sections in data sparse subregions. The model explicitly characterises five significant and regionally recognisable geologic surfaces that mark the boundaries between geologic units with distinct lithology and age, including the Banks Peninsula volcanics, which are noted to strongly influence seismic wave propagation. The Basement surface represents the base of the Canterbury sedimentary basin, where a large impedance contrast exists re- sulting in basin-generated waves. Seismic velocities for the lithological units between the geologic surfaces are derived from well logs, seismic reflection surveys, root mean square stacking velocities, empirical correlations, and benchmarked against a regional crustal model, thus providing the necessary information for a Canterbury velocity model for use in broadband seismic wave propagation. A 3D high-resolution model of the Quaternary geologic stratigraphic sequence in the Canterbury region is also developed utilising datasets of 527 high-quality water well logs, and 377 near-surface cone penetration test records. The model, developed using geostatistical Kriging, represents the complex interbedded regional Quaternary geology by characterising the boundaries between significant interbedded geologic formations as 3D surfaces including explicit modelling of the formation unconformities resulting from the Banks Peninsula volcanics. The stratigraphic layering present can result in complex wave propagation. The most prevalent trend observed in the surfaces was the downward dip from inland to the eastern coastline as a result of the dominant fluvial depositional environment of the terrestrial gravel formations. The developed model provides a benefi- cial contribution towards developing a comprehensive understanding of recorded ground motions in the region and also providing the necessary information for future site char- acterisation and site response analyses. To highlight the practicality of the model, an example illustrating the role of the model in constraining surface wave analysis-based shear wave velocity profiling is illustrated along with the calculation of transfer functions to quantify the effect of the interbedded geology on wave propagation. Lastly, an investigation of systematic biases in the (Graves and Pitarka, 2010, 2015) ground motion simulation methodology and the specific inputs used for the Canterbury region is presented considering 144 small-to-moderate magnitude earthquakes. In the simulation of these earthquakes, the 3D Canterbury Velocity Model, developed as a part of this dissertation, is used for the low-frequency simulation, and a regional 1D velocity model for the high-frequency simulation. Representative results for individual earthquake sources are first presented to highlight the characteristics of the small-to-moderate mag- nitude earthquake simulations through waveforms, intensity measure scaling with source- to-site distance, and spectral bias of the individual events. Subsequently, a residual de- composition is performed to examine the between- and within-event residuals between observed data, and simulated and empirical predictions. By decomposing the residuals into between- and within-event residuals, the biases in source, path and site effects, and their causes, can be inferred. The residuals are comprehensively examined considering their aggregated characteristics, dependence on predictor variables, spatial distribution, and site-specific effects. The results of the simulation are also benchmarked against empir- ical ground motion models, where their similarities manifest from common components in their prediction. Ultimately, suggestions to improve the predictive capability of the simulations are presented as a result of the analysis.

Research Papers, Lincoln University

We examined the stratigraphy of alluvial fans formed at the steep range front of the Southern Alps at Te Taho, on the north bank of the Whataroa River in central West Coast, South Island, New Zealand. The range front coincides with the Alpine Fault, an Australian-Pacific plate boundary fault, which produces regular earthquakes. Our study of range front fans revealed aggradation at 100- to 300-year intervals. Radiocarbon ages and soil residence times (SRTs) estimated by a quantitative profile development index allowed us to elucidate the characteristics of four episodes of aggradation since 1000 CE. We postulate a repeating mode of fan behaviour (fan response cycle [FRC]) linked to earthquake cycles via earthquake-triggered landslides. FRCs are characterised by short response time (aggradation followed by incision) and a long phase when channels are entrenched and fan surfaces are stable (persistence time). Currently, the Te Taho and Whataroa River fans are in the latter phase. The four episodes of fan building we determined from an OxCal sequence model correlate to Alpine Fault earthquakes (or other subsidiary events) and support prior landscape evolution studies indicating ≥M7.5 earthquakes as the main driver of episodic sedimentation. Our findings are consistent with other historic non-earthquake events on the West Coast but indicate faster responses than other earthquake sites in New Zealand and elsewhere where rainfall and stream gradients (the basis for stream power) are lower. Judging from the thickness of fan deposits and the short response times, we conclude that pastoral farming (current land-use) on the fans and probably across much of the Whataroa River fan would be impossible for several decades after a major earthquake. The sustainability of regional tourism and agriculture is at risk, more so because of the vulnerability of the single through road in the region (State Highway 6).

Audio, Radio New Zealand

Questions to Ministers 1. Hon DAVID CUNLIFFE to the Minister of Finance: Does he agree with Reserve Bank Governor Alan Bollard's assessment that the economic recovery is proving to be "slow and fragile"? 2. CRAIG FOSS to the Minister of Finance: What reports has he received on the economy? 3. Hon TREVOR MALLARD to the Minister for Economic Development: What specific actions has he taken since becoming Minister of Economic Development to secure the New Zealand film industry? 4. KATRINA SHANKS to the Minister of Housing: What reports has he received about the stakeholder engagement carried out by the Housing Shareholders' Advisory Group? 5. Hon CLAYTON COSGROVE to the Minister for Canterbury Earthquake Recovery: Will he support my recommendation to set up an advocacy support service to provide earthquake-affected residents with help in dealing with their private insurers to prevent them being shunted between these insurers and the Earthquake Commission? 6. Dr RUSSEL NORMAN to the Minister of Conservation: What steps, if any, is she taking to protect the unique, rare and threatened Nevis "Gollum galaxiid", a native fish species found only in the Nevis River in Central Otago? 7. GRANT ROBERTSON to the Minister for Tertiary Education: How does removing $55 million from industry training help the growth of the productive economy? 8. CHRIS AUCHINVOLE to the Minister for the Environment: What progress is the Government making in improving New Zealand's freshwater management? 9. SUE MORONEY to the Minister of Education: Does she stand by all her statements about subsidies and fee controls in early childhood education? 10. Hon RODNEY HIDE to the Attorney-General: Is it Government policy to exempt the holders of customary marine title from the application of the Resource Management Act 1991 and provide the holders with the sole right to give, or deny, a Resource Management Act permission right with no right of appeal or objection against the decision, as described in Bell Gully's Newsletter Update October 2010 on the Marine and Coastal Area (Takutai Moana) Bill? 11. Hon NANAIA MAHUTA to the Minister responsible for Whānau Ora: Is she satisfied with the process to shortlist Whānau Ora providers? 12. PESETA SAM LOTU-IIGA to the Minister of Energy and Resources: Why is the Government funding the Energy Spot advertising campaign?

Audio, Radio New Zealand

BRENDAN HORAN to the Minister for State Owned Enterprises: Is he satisfied with all aspects of the KiwiRail Turnaround Plan? GRANT ROBERTSON to the Prime Minister: Does he stand by his statement in relation to Hon John Banks, “The law may be very loose as I’ve said before, and the law may well need reforming and that’s something we’ll consider in due course but I’m comfortable with what he’s done”? JOHN HAYES to the Minister of Finance: What reports has he received on the international economic situation and its impact on New Zealand? Hon DAVID PARKER to the Minister of Finance: Does he stand by his statement regarding migration to Australia “What’s the point of standing in the airport crying about it?”; if so, are the numbers of people leaving New Zealand from the regions being replaced by people moving into the regions from elsewhere in New Zealand or overseas? Hon TARIANA TURIA to the Minister of Finance: Did the Minister of Māori Affairs discuss with him how the Crown would meet its Treaty obligation with respect to the Mixed Ownership Model? EUGENIE SAGE to the Minister for Canterbury Earthquake Recovery: What advice, if any, has he received on the potential sale of Christchurch City Council assets to help pay for the rebuild of Christchurch? JONATHAN YOUNG to the Minister of Energy and Resources: What reports has he received on renewable electricity generation in New Zealand? JACINDA ARDERN to the Minister for Social Development: What was discussed at the three meetings she has had with Australian company Taylor Fry, known for its actuary services to the insurance industry? Dr PAUL HUTCHISON to the Minister of Health: What investments are planned for improving health facilities in Wairoa? Hon CLAYTON COSGROVE to the Minister for State Owned Enterprises: Does he agree with the Minister of Finance that “The asset sales programme remains on track”? LOUISE UPSTON to the Minister of Labour: What advice has she received regarding the implementation of the new adventure activities regulations? Hon ANNETTE KING to the Minister of Housing: What recent reports has he received on housing in the Aranui area of Christchurch?

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. Total and differential settlements, and lateral movements, due to liquefaction and lateral spreading is estimated to have severely compromised 15,000 residential structures, the majority of which otherwise sustained only minor to moderate damage directly due to inertial loading from ground shaking. Liquefaction also had a profound effect on lifelines and other infrastructure, particularly bridge structures, and underground services. Minor damage was also observed at flood stop banks to the north of the city, which were more severely impacted in the 4th September 2010 Darfield earthquake. Due to the large high-frequency ground motion in the Port hills numerous rock falls and landslides also occurred, resulting in several fatalities and rendering some residential areas uninhabitable.

Research papers, University of Canterbury Library

his poster presents the ongoing development of a 3D Canterbury seismic velocity model which will be used in physics-based hybrid broadband ground motion simulation of the 2010-2011 Canterbury earthquakes. Velocity models must sufficiently represent critical aspects of the crustal structure over multiple length scales which will influence the results of the simulations. As a result, numerous sources of data are utilized in order to provide adequate resolution where necessary. Figure 2: (a) Seismic reflection line showing P-wave velocities and significant geologic horizons (Barnes et al. 2011), and (b) Shear wave profiles at 10 locations (Stokoe et al. 2013). Figure 4: Cross sections of the current version of the Canterbury velocity model to depths of 10km as shown in Figure 1: (a) at a constant latitude value of -43.6˚, and (b) at a constant longitude value of 172.64˚. 3. Ground Surface and Geologic Horizon Models Figure 3: (a) Ground surface model derived from numerous available digital elevation models, and (b) Base of the Quaternary sediments derived from structural contours and seismic reflection line elevations. The Canterbury region has a unique and complex geology which likely has a significant impact on strong ground motions, in particular the deep and loose deposits of the Canterbury basin. The Canterbury basin has several implications on seismic wave phenomena such as long period ground motion amplification and wave guide effects. Using a realistic 3D seismic velocity model in physics-based ground motion simulation will implicitly account for such effects and the resultant simulated ground motions can be studied to gain a fundamental understanding of the salient ground motion phenomena which occurred during the Canterbury earthquakes, and the potential for repeat occurrences in the Canterbury region. Figure 1 shows the current model domain as a rectangular area between Lat=[-43.2˚,-44.0˚], and Lon=[171.5˚,173.0˚]. This essentially spans the area between the foot of the Southern Alps in the North West to Banks Peninsula in the East. Currently the model extends to a depth of 50km below sea level.

Research papers, University of Canterbury Library

Geologic phenomena produced by earthquake shaking, including rockfalls and liquefaction features, provide important information on the intensity and spatiotemporal distribution of earthquake ground motions. The study of rockfall and liquefaction features produced in contemporary well- instrumented earthquakes increases our knowledge of how natural and anthropogenic environments respond to earthquakes and improves our ability to deduce seismologic information from analogous pre-contemporary (paleo-) geologic features. The study of contemporary and paleo- rockfall and liquefaction features enables improved forecasting of environmental responses to future earthquakes. In this thesis I utilize a combination of field and imagery-based mapping, trenching, stratigraphy, and numerical dating techniques to understand the nature and timing of rockfalls (and hillslope sedimentation) and liquefaction in the eastern South Island of New Zealand, and to examine the influence that anthropogenic activity has had on the geologic expressions of earthquake phenomena. At Rapaki (Banks Peninsula, NZ), field and imagery-based mapping, statistical analysis and numerical modeling was conducted on rockfall boulders triggered by the fatal 2011 Christchurch earthquakes (n=285) and compared with newly identified prehistoric (Holocene and Pleistocene) boulders (n=1049) deposited on the same hillslope. A significant population of modern boulders (n=26) travelled farther downslope (>150 m) than their most-travelled prehistoric counterparts, causing extensive damage to residential dwellings at the foot of the hillslope. Replication of prehistoric boulder distributions using 3-dimensional rigid body numerical models requires the application of a drag-coefficient, attributed to moderate to dense slope vegetation, to account for their spatial distribution. Radiocarbon dating provides evidence for 17th to early 20th century deforestation at the study site during Polynesian and European colonization and after emplacement of prehistoric rockfalls. Anthropocene deforestation enabled modern rockfalls to exceed the limits of their prehistoric predecessors, highlighting a shift in the geologic expression of rockfalls due to anthropogenic activity. Optical and radiocarbon dating of loessic hillslope sediments in New Zealand’s South Island is used to constrain the timing of prehistoric rockfalls and associated seismic events, and quantify spatial and temporal patterns of hillslope sedimentation including responses to seismic and anthropogenic forcing. Luminescence ages from loessic sediments constrain timing of boulder emplacement to between ~3.0 and ~12.5 ka, well before the arrival of Polynesians (ca AD 1280) and Europeans (ca AD 1800) in New Zealand, and suggest loess accumulation was continuing at the study site until 12-13 ka. Large (>5 m3) prehistoric rockfall boulders preserve an important record of Holocene hillslope sedimentation by creating local traps for sediment aggradation and upbuilding soil formation. Sediment accumulation rates increased considerably (>~10 factor increase) following human arrival and associated anthropogenic burning of hillslope vegetation. New numerical ages are presented to place the evolution of loess-mantled hillslopes in New Zealand’s South Island into a longer temporal framework and highlight the roles of earthquakes and humans on hillslope surface process. Extensive field mapping and characterization for 1733 individual prehistoric rockfall boulders was conducted at Rapaki and another Banks Peninsula site, Purau, to understand their origin, frequency, and spatial and volumetric distributions. Boulder characteristics and distributions were compared to 421 boulders deposited at the same sites during the 2010-2011 Canterbury earthquake sequence. Prehistoric boulders at Rapaki and Purau are comprised of two dominant lithofacies types: volcanic breccia and massive (coherent) lava basalt. Volcanic breccia boulders are found in greatest abundance (64-73% of total mapped rockfall) and volume (~90-96% of total rockfall) at both locations and exclusively comprise the largest boulders with the longest runout distances that pose the greatest hazard to life and property. This study highlights the primary influence that volcanic lithofacies architecture has on rockfall hazard. The influence of anthropogenic modifications on the surface and subsurface geologic expression of contemporary liquefaction created during the 2010-2011 Canterbury earthquake sequence (CES) in eastern Christchurch is examined. Trench observations indicate that anthropogenic fill layer boundaries and the composition/texture of discretely placed fill layers play an important role in absorbing fluidized sand/silt and controlling the subsurface architecture of preserved liquefaction features. Surface liquefaction morphologies (i.e. sand blows and linear sand blow arrays) display alignment with existing utility lines and utility excavations (and perforated pipes) provided conduits for liquefaction ejecta during the CES. No evidence of pre-CES liquefaction was identified within the anthropogenic fill layers or underlying native sediment. Radiocarbon dating of charcoal within the youngest native sediment suggests liquefaction has not occurred at the study site for at least the past 750-800 years. The importance of systematically examining the impact of buried infrastructure on channelizing and influencing surface and subsurface liquefaction morphologies is demonstrated. This thesis highlights the importance of using a multi-technique approach for understanding prehistoric and contemporary earthquake phenomena and emphasizes the critical role that humans play in shaping the geologic record and Earth’s surface processes.

Research papers, University of Canterbury Library

This thesis is concerned with modelling rockfall parameters associated with cliff collapse debris and the resultant “ramp” that formed following the high peak ground acceleration (PGA) events of 22 February 2011 and 13 June 2011. The Christchurch suburb of Redcliffs, located at the base of the Port Hills on the northern side of Banks Peninsula, New Zealand, is comprised of Miocene-age volcanics with valley-floor infilling marine sediments. The area is dominated by basaltic lava flows of the Mt Pleasant Formation, which is a suite of rocks forming part of the Lyttelton Volcanic Group that were erupted 11.0-10.0Ma. Fresh exposure enabled the identification of a basaltic ignimbrite unit at the study site overlying an orange tuff unit that forms a marker horizon spanning the length of the field area. Prior to this thesis, basaltic ignimbrite on Banks Peninsula has not been recorded, so descriptions and interpretations of this unit are the first presented. Mapping of the cliff face by remote observation, and analysis of hand samples collected from the base of the debris slopes, has identified a very strong (>200MPa), columnar-jointed, welded unit, and a very weak (<5MPa), massive, so-called brecciated unit that together represent the end-member components of the basaltic ignimbrite. Geochemical analysis shows the welded unit is picrite basalt, and the brecciated unit is hawaiite, making both clearly distinguishable from the underlying trachyandesite tuff. RocFall™ 4.0 was used to model future rockfalls at Redcliffs. RocFall™ is a two-dimensional (2D), hybrid, probabilistic modelling programme for which topographical profile data is used to generate slope profiles. GNS Science collected the data used for slope profile input in March 2011. An initial sensitivity analysis proved the Terrestrial Laser Scan (TLS)-derived slope to be too detailed to show any results when the slope roughness parameter was tested. A simplified slope profile enabled slope roughness to be varied, however the resulting model did not correlate with field observations as well. By using slope profile data from March 2011, modelled rockfall behaviour has been calibrated with observed rockfall runout at Redcliffs in the 13 June 2011 event to create a more accurate rockfall model. The rockfall model was developed on a single slope profile (Section E), with the chosen model then applied to four other section lines (A-D) to test the accuracy of the model, and to assess future rockfall runout across a wider area. Results from Section Lines A, B, and E correlate very well with field observations, with <=5% runout exceeding the modelled slope, and maximum bounce height at the toe of the slope <=1m. This is considered to lie within observed limits given the expectation that talus slopes will act as a ramp on which modelled rocks travel further downslope. Section Lines C and D produced higher runout percentage values than the other three section lines (23% and 85% exceeding the base of the slope, respectively). Section D also has a much higher maximum bounce height at the toe of the slope (~8.0m above the slope compared to <=1.0m for the other four sections). Results from modelling of all sections shows the significance of the ratio between total cliff height (H) and horizontal slope distance (x), and of maximum drop height to the top of the talus (H*) and horizontal slope distance (x). H/x can be applied to the horizontal to vertical ratio (H:V) as used commonly to identify potential slope instability. Using the maximum value from modelling at Redcliffs, the future runout limit can be identified by applying a 1.4H:1V ratio to the remainder of the cliff face. Additionally, the H*/x parameter shows that when H*/x >=0.6, the percentage of rock runout passing the toe of the slope will exceed 5%. When H*/x >=0.75, the maximum bounce height at the toe of the slope can be far greater than when H*/x is below this threshold. Both of these parameters can be easily obtained, and can contribute valuable guideline data to inform future land-use planning decisions. This thesis project has demonstrated the applicability of a 2D probabilistic-based model (RocFall™ 4.0) to evaluate rockfall runout on the talus slope (or ramp) at the base of ~35-70m high cliff with a basaltic ignimbrite source. Limitations of the modelling programme have been identified, in particular difficulties with adjusting modelled roughness of the slope profile and the inability to consider fragmentation. The runout profile using RocFall™ has been successfully calibrated against actual profiles and some anomalous results have been identified.

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading in large seismic events often results in pervasive and costly damage to engineering structures and lifelines, making it a critical component of engineering design. However, the complex nature of this phenomenon leads to designing for such a hazard extremely challenging and there is a clear for an improved understanding and predicting liquefaction-induced lateral spreading. The 2010-2011 Canterbury (New Zealand) Earthquakes triggered severe liquefaction-induced lateral spreading along the streams and rivers of the Christchurch region, causing extensive damage to roads, bridges, lifelines, and structures in the vicinity. The unfortunate devastation induced from lateral spreading in these events also rendered the rare opportunity to gain an improved understanding of lateral spreading displacements specific to the Christchurch region. As part of this thesis, the method of ground surveying was employed following the 4 September 2010 Darfield (Mw 7.1) and 22 February 2011 Christchurch (Mw 6.2) earthquakes at 126 locations (19 repeated) throughout Christchurch and surrounding suburbs. The method involved measurements and then summation of crack widths along a specific alignment (transect) running approximately perpendicular to the waterway to indicate typically a maximum lateral displacement at the bank and reduction of the magnitude of displacements with distance from the river. Rigorous data processing and comparisons with alternative measurements of lateral spreading were performed to verify results from field observations and validate the method of ground surveying employed, as well as highlight the complex nature of lateral spreading displacements. The welldocumented field data was scrutinized to gain an understanding of typical magnitudes and distribution patterns (distribution of displacement with distance) of lateral spreading observed in the Christchurch area. Maximum displacements ranging from less than 10 cm to over 3.5 m were encountered at the sites surveyed and the area affected by spreading ranged from less than 20 m to over 200 m from the river. Despite the highly non-uniform displacements, four characteristic distribution patterns including large, distributed ground displacements, block-type movements, large and localized ground displacements, and areas of little to no displacements were identified. Available geotechnical, seismic, and topographic data were collated at the ground surveying sites for subsequent analysis of field measurements. Two widely-used empirical models (Zhang et al. (2004), Youd et al. (2002)) were scrutinized and applied to locations in the vicinity of field measurements for comparison with model predictions. The results indicated generally poor correlation (outside a factor of two) with empirical predictions at most locations and further validated the need for an improved, analysis- based method of predicting lateral displacements that considers the many factors involved on a site-specific basis. In addition, the development of appropriate model input parameters for the Youd et al. (2002) model led to a site-specific correlation of soil behavior type index, Ic, and fines content, FC, for sites along the Avon River in Christchurch that matched up well with existing Ic – FC relationships commonly used in current practice. Lastly, a rigorous analysis was performed for 25 selected locations of ground surveying measurements along the Avon River where ground slope conditions are mild (-1 to 2%) and channel heights range from about 2 – 4.5 m. The field data was divided into categories based on the observed distribution pattern of ground displacements including: large and distributed, moderate and distributed, small to negligible, and large and localized. A systematic approach was applied to determine potential critical layers contributing to the observed displacement patterns which led to the development of characteristic profiles for each category considered. The results of these analyses outline an alternative approach to the evaluation of lateral spreading in which a detailed geotechnical analysis is used to identify the potential for large spreading displacements and likely spatial distribution patterns of spreading. Key factors affecting the observed magnitude and distribution of spreading included the thickness of the critical layer, relative density, soil type and layer continuity. It was found that the large and distributed ground displacements were associated with a thick (1.5 – 2.5 m) deposit of loose, fine to silty sand (qc1 ~4-7 MPa, Ic 1.9-2.1, qc1n_cs ~50-70) that was continuous along the bank and with distance from the river. In contrast, small to negligible displacements were characterized by an absence of or relatively thin (< 1 m), discontinuous critical layer. Characteristic features of the moderate and distributed displacements were found to be somewhere between these two extremes. The localized and large displacements showed a characteristic critical layer similar to that observed in the large and distributed sites but that was not continuous and hence leading to the localized zone of displacement. The findings presented in this thesis illustrate the highly complex nature of lateral displacements that cannot be captured in simplified models but require a robust geotechnical analysis similar to that performed for this research.

Audio, Radio New Zealand

DAVID SHEARER to the Prime Minister: Does he stand by his statement &quot;I am deeply concerned about every child in New Zealand who is in poverty&quot;; if so, why has the number of children living in material hardship grown under his watch? TODD McCLAY to the Minister of Finance: What measures has the Government taken to support vulnerable New Zealanders through the aftermath of the domestic recession and global financial crisis? METIRIA TUREI to the Prime Minister: When he said &quot;we don't want to see any New Zealand child suffer &hellip; children don't get to make choices, they're often the victim of circumstance&quot; does that mean he will take tangible steps to ensure children don't suffer because of circumstances beyond their control? Rt Hon WINSTON PETERS to the Prime Minister: Does he have confidence in the Minister of Immigration? Hon DAVID PARKER to the Minister of Finance: Compared to 2012, does the Reserve Bank forecast the New Zealand dollar (as measured by the Trade Weighted Index) to strengthen or weaken in the next two years, and does he believe this will make New Zealand exporters more competitive or less competitive? DAVID BENNETT to the Minister for Economic Development: How is the Government encouraging the sustainable use of natural resources to support jobs and grow the economy? Hon MARYAN STREET to the Minister of Health: Is he satisfied with the state of children's health in New Zealand; if not, why not? COLIN KING to the Minister of Energy and Resources: What recent announcement has he made about Block Offer 2012? EUGENIE SAGE to the Minister for the Environment: Does she agree with the New Zealand Freshwater Sciences Society in relation to freshwater that &quot;failure to act with decisiveness and urgency risks further environmental degradation and erosion of our international environmental reputation&quot;; if not, why not? Hon LIANNE DALZIEL to the Minister for Building and Construction: How quickly will he respond to the building performance, assessment and construction recommendations of the Royal Commission of Inquiry into Building Failure caused by the Canterbury Earthquakes? NICKY WAGNER to the Minister for Building and Construction: What is the Government doing in response to the Canterbury Earthquakes Royal Commission's full report? CLARE CURRAN to the Prime Minister: Does he stand by all his statements?

Audio, Radio New Zealand

Hon DAVID CUNLIFFE to the Prime Minister: Does he have confidence that his Ministers are ethical and competent? DAVID BENNETT to the Minister of Finance: What reports has he received on building momentum in the New Zealand economy and how this is supporting jobs? METIRIA TUREI to the Prime Minister: Has he checked his files yet regarding whether Hon John Banks declared a potential conflict of interest in relation to the New Zealand International Convention Centre Bill while still a Minister; if so, was any conflict declared? Hon ANNETTE KING to the Minister of Health: Is he satisfied with the performance of Health Benefits Ltd; if so, why? NICKY WAGNER to the Minister for Canterbury Earthquake Recovery: What recent progress has been made on the anchor projects in the Christchurch Central recovery plan? ANDREW WILLIAMS to the Minister of Conservation: Has he received any reports on the environmental impact of seismic surveying in the New Zealand Exclusive Economic Zone? Hon MARYAN STREET to the Minister of State Services: Has he asked the State Services Commissioner for reports on recent failures of state sector agencies to carry out their functions according to the law; if not, why not? IAN McKELVIE to the Minister for Primary Industries: What progress can he report on boosting innovation in the primary sector through the Primary Growth Partnership? Hon DAMIEN O'CONNOR to the Minister for Primary Industries: What reports, if any, has he received on the state of the New Zealand kiwifruit industry? PAUL FOSTER-BELL to the Minister of Police: What recent announcements has she made to support the victims of serious financial crime? Hon RUTH DYSON to the Minister of Conservation: Why did he tell the House on 24 September &quot;the first I knew of the issue of the submission was just 5 days before&quot; when as he stated on 17 October &quot;The first full briefing on Tukituki was on 5 March and it confirmed the department's role in the process and mentioned nitrogen and phosphorous management&quot;? Dr KENNEDY GRAHAM to the Minister for Climate Change Issues: Will he explain, given the latest projection of New Zealand's net greenhouse gas emissions is around 90 million tonnes in 2040, how the Government can conceivably reach its own emissions reduction target of 30 million tonnes by 2050?

Research papers, University of Canterbury Library

The Mw 6.2 February 22nd 2011 Christchurch earthquake (and others in the 2010-2011 Canterbury sequence) provided a unique opportunity to study the devastating effects of earthquakes first-hand and learn from them for future engineering applications. All major events in the Canterbury earthquake sequence caused widespread liquefaction throughout Christchurch’s eastern suburbs, particularly extensive and severe during the February 22nd event. Along large stretches of the Avon River banks (and to a lesser extent along the Heathcote) significant lateral spreading occurred, affecting bridges and the infrastructure they support. The first stage of this research involved conducting detailed field reconnaissance to document liquefaction and lateral spreading-induced damage to several case study bridges along the Avon River. The case study bridges cover a range of ages and construction types but all are reinforced concrete structures which have relatively short, stiff decks. These factors combined led to a characteristic deformation mechanism involving deck-pinning and abutment back-rotation with consequent damage to the abutment piles and slumping of the approaches. The second stage of the research involved using pseudo-static analysis, a simplified seismic modelling tool, to analyse two of the bridges. An advantage of pseudo-static analysis over more complicated modelling methods is that it uses conventional geotechnical data in its inputs, such as SPT blowcount and CPT cone resistance and local friction. Pseudo-static analysis can also be applied without excessive computational power or specialised knowledge, yet it has been shown to capture the basic mechanisms of pile behaviour. Single pile and whole bridge models were constructed for each bridge, and both cyclic and lateral spreading phases of loading were investigated. Parametric studies were carried out which varied the values of key parameters to identify their influence on pile response, and computed displacements and damages were compared with observations made in the field. It was shown that pseudo-static analysis was able to capture the characteristic damage mechanisms observed in the field, however the treatment of key parameters affecting pile response is of primary importance. Recommendations were made concerning the treatment of these governing parameters controlling pile response. In this way the future application of pseudo-static analysis as a tool for analysing and designing bridge pile foundations in liquefying and laterally spreading soils is enhanced.

Research papers, University of Canterbury Library

Rapid, reliable information on earthquake-affected structures' current damage/health conditions and predicting what would happen to these structures under future seismic events play a vital role in accelerating post-event evaluations, leading to optimized on-time decisions. Such rapid and informative post-event evaluations are crucial for earthquake-prone areas, where each earthquake can potentially trigger a series of significant aftershocks, endangering the community's health and wealth by further damaging the already-affected structures. Such reliable post-earthquake evaluations can provide information to decide whether an affected structure is safe to stay in operation, thus saving many lives. Furthermore, they can lead to more optimal recovery plans, thus saving costs and time. The inherent deficiency of visual-based post-earthquake evaluations and the importance of structural health monitoring (SHM) methods and SHM instrumentation have been highlighted within this thesis, using two earthquake-affected structures in New Zealand: 1) the Canterbury Television (CTV) building, Christchurch; 2) the Bank of New Zealand (BNZ) building, Wellington. For the first time, this thesis verifies the theoretically- and experimentally validated hysteresis loop analysis (HLA) SHM method for the real-world instrumented structure of the BNZ building, which was damaged severely due to three earthquakes. Results indicate the HLA-SHM method can accurately estimate elastic stiffness degradation for this reinforced concrete (RC) pinched structure across the three earthquakes, which remained unseen until after the third seismic event. Furthermore, the HLA results help investigate the pinching effects on the BNZ building's seismic response. This thesis introduces a novel digital clone modelling method based on the robust and accurate SHM results delivered by the HLA method for physical parameters of the monitored structure and basis functions predicting the changes of these physical parameters due to future earthquake excitations. Contrary to artificial intelligence (AI) based predictive methods with black-box designs, the proposed predictive method is entirely mechanics-based with an explicitly-understandable design, making them more trusted and explicable to stakeholders engaging in post-earthquake evaluations, such as building owners and insurance firms. The proposed digital clone modelling framework is validated using the BNZ building and an experimental RC test structure damaged severely due to three successive shake-table excitations. In both structures, structural damage intensifies the pinching effects in hysteresis responses. Results show the basis functions identified from the HLA-SHM results for both structures under Event 1 can online estimate structural damage due to subsequent Events 2-3 from the measured structural responses, making them valuable tool for rapid warning systems. Moreover, the digital twins derived for these two structures under Event 1 can successfully predict structural responses and damage under Events 2-3, which can be integrated with the incremental dynamic analysis (IDA) method to assess structural collapse and its financial risks. Furthermore, it enables multi-step IDA to evaluate earthquake series' impacts on structures. Overall, this thesis develops an efficient method for providing reliable information on earthquake-affected structures' current and future status during or immediately after an earthquake, considerably guaranteeing safety. Significant validation is implemented against both experimental and real data of RC structures, which thus clearly indicate the accurate predictive performance of this HLA-based method.

Research papers, University of Canterbury Library

Spatial variations in river facies exerted a strong influence on the distribution of liquefaction features observed in Christchurch during the 2010-11 Canterbury Earthquake Sequence (CES). Liquefaction and liquefaction-induced ground deformation was primarily concentrated near modern waterways and areas underlain by Holocene fluvial deposits with shallow water tables (< 1 to 2 m). In southern Christchurch, spatial variations of liquefaction and subsidence were documented in the suburbs within inner meander loops of the Heathcote River. Newly acquired geospatial data, geotechnical reports and eye-witness discussions are compiled to provide a detailed account of the surficial effects of CES liquefaction and ground deformation adjacent to the Heathcote River. LiDAR data and aerial photography are used to produce a new series of original figures which reveal the locations of recurrent liquefaction and subsidence. To investigate why variable liquefaction patterns occurred, the distribution of surface ejecta and associated ground damage is compared with near-surface sedimentologic, topographic, and geomorphic variability to seek relationships between the near-surface properties and observed ground damages. The most severe liquefaction was concentrated within a topographic low in the suburb of St Martins, an inner meander loop of the Heathcote River, with liquefaction only minor or absent in the surrounding areas. Subsurface investigations at two sites in St Martins enable documentation of fluvial stratigraphy, the expressions of liquefaction, and identification of pre-CES liquefaction features. Excavation to water table depths (~1.5 m below the surface) across sand boils reveals multiple generations of CES liquefaction dikes and sills that cross-cut Holocene fluvial and anthropogenic stratigraphy. Based on in situ geotechnical tests (CPT) indicating sediment with a factor of safety < 1, the majority of surface ejecta was sourced from well-sorted fine to medium sand at < 5 m depth, with the most damaging liquefaction corresponding with the location of a low-lying sandy paleochannel, a remnant river channel from the Holocene migration of the meander in St Martins. In the adjacent suburb of Beckenham, where migration of the Heathcote River has been laterally confined by topography associated with the volcanic lithologies of Banks Peninsula, severe liquefaction was absent with only minor sand boils occurring closest to the modern river channel. Auger sampling across the suburb revealed thick (>1 m) clay-rich overbank and back swamp sediments that produced a stratigraphy which likely confined the units susceptible to liquefaction and prevented widespread ejection of liquefied material. This analysis suggests river migration promotes the formation and preservation of fluvial deposits prone to liquefaction. Trenching revealed the strongest CES earthquakes with large vertical accelerations favoured sill formation and severe subsidence at highly susceptible locations corresponding with an abandoned channel. Less vulnerable sites containing deeper and thinner sand bodies only liquefied in the strongest and most proximal earthquakes forming minor localised liquefaction features. Liquefaction was less prominent and severe subsidence was absent where lateral confinement of a Heathcote meander has promoted the formation of fluvial stratum resistant to liquefaction. Correlating CES liquefaction with geomorphic interpretations of Christchurch’s Heathcote River highlights methods in which the performance of liquefaction susceptibility models can be improved. These include developing a reliable proxy for estimating soil conditions in meandering fluvial systems by interpreting the geology and geomorphology, derived from LiDAR data and modern river morphology, to improve the methods of accounting for the susceptibility of an area. Combining geomorphic interpretations with geotechnical data can be applied elsewhere to identify regional liquefaction susceptibilities, improve existing liquefaction susceptibility datasets, and predict future earthquake damage.

Research papers, University of Canterbury Library

Following the 22 February 2011, MW 6.2 earthquake located on a fault beneath the Port Hills of Christchurch, fissuring of up to several hundred metres in length was observed in the loess and loess-colluvium of foot-slope positions in north-facing valleys of the Port Hills. The fissuring was observed in all major valleys, occurred at similar low altitudes, showing a contour-parallel orientation and often accompanied by both lateral compression/extension features and spring formation in the valley floor below. Fissuring locations studied in depth included Bowenvale Valley, Hillsborough Valley, Huntlywood Terrace–Lucas Lane, Bridle Path Road, and Maffeys Road–La Costa Lane. Investigations into loess soil, its properties and mannerisms, as well as international examples of its failure were undertaken, including study of the Loess Plateau of China, the Teton Dam, and palaeo-fissuring on Banks Peninsula. These investigations lead to the conclusion that loess has the propensity to fail, often due to the infiltration of water, the presence of which can lead to its instantaneous disaggregation. Literature study and laboratory analysis of Port Hills loess concluded that is has the ability to be stable in steep, sub-vertical escarpments, and often has a sub-vertically jointed internal structure and has a peak shear strength when dry. Values for cohesion, c (kPa) and the internal friction angle, ϕ (degrees) of Port Hills loess were established. The c values for the 40 Rapaki Road, 3 Glenview Terrace loess samples were 13.4 kPa and 19.7 kPa, respectively. The corresponding ϕ values were thought unusually high, at 42.0° and 43.4°.The analysed loess behaved very plastically, with little or no peak strength visible in the plots as the test went almost directly to residual strength. A geophysics resistivity survey showed an area of low resistivity which likely corresponds to a zone of saturated clayey loess/loess colluvium, indicating a high water table in the area. This is consistent with the appearances of local springs which are located towards the northern end of each distinct section of fissure trace and chemical analysis shows that they are sourced from the Port Hills volcanics. Port Hills fissuring may be sub-divided into three categories, Category A, Category B, and Category C, each characterised by distinctive features of the fissures. Category A includes fissures which display evidence of, spring formation, tunnel-gullying, and lateral spreading-like behaviour or quasi-toppling. These fissures are several metres down-slope of the loess-bedrock interface, and are in valleys containing a loess-colluvium fill. Category B fissures are in wider valleys than those in Category A, and the valleys contain estuarine silty sediments which liquefied during the earthquake. Category C fissures occurred at higher elevations than the fissures in the preceding categories, being almost coincident with bedrock outcropping. It is believed that the mechanism responsible for causing the fissuring is a complex combination of three mechanisms: the trampoline effect, bedrock fracturing, and lateral spreading. These three mechanisms can be applied in varying degrees to each of the fissuring sites in categories A, B, and C, in order to provide explanation for the observations made at each. Toppling failure can describe the soil movement as a consequence of the a three causative mechanisms, and provides insight into the movement of the loess. Intra-loess water coursing and tunnel gullying is thought to have encouraged and exacerbated the fissuring, while not being the driving force per se. Incipient landsliding is considered to be the least likely of the possible fissuring interpretations.