Search

found 6322 results

Images, UC QuakeStudies

A photograph of a man at the 'free legal help' table in a temporary emergency management centre set up after the 22 February 2011 earthquake. The table was set up by Community Law Canterbury to offer free legal help to those in need.

Audio, Radio New Zealand

An inquiry into the Earthquake Commission has found it was poorly prepared for the Canterbury earthquakes - and has left people with a "deep mistrust of government" that will take years to overcome. The government has this morning released findings from the inquiry, chaired by Dame Silvia Cartwright. Our Christchurch reporter, Conan Young, has been reading through the details and spoke with Māni Dunlop.  

Images, Alexander Turnbull Library

Text at the top of the cartoon reads 'News - A "Moon man non-event lunch" will be held above Christchurch to defy quake predictions for that day'. In tea rooms on hills above Christchurch a group of people enjoy lunch as they defy precaution against a predicted earthquake. They order a 'pot o' tea', 'pie & chips', 'sandwich & coke' and a 'shake & roll'; above in a black and thunderous cloud God thinks he heard someone request a shake & a roll'. Context - After the two big earthquakes in Christchurch on 4 September 2010 and 22 February 2011, the so-called Moon Man Ken Ring is backing away from his prediction that Christchurch will be whacked by a huge earthquake today (20 March 2011). His claims have terrified Cantabrians and led to people fleeing Christchurch. M.P. Nick Smith and the Skeptics Society are planning a lunch in one of Christchurch's highest, oldest, stone buildings - on the day that "moon man" Ken Ring says the city will be hit by another devastating earthquake ; the lunch will be held at noon on March 20 at the Sign of the Kiwi, on the top of the Port Hills - which Smith said was the closest building to the epicentre of the February 22 quake. Quantity: 1 digital cartoon(s).

Images, UC QuakeStudies

A scanned copy of a photograph of the garden of Di Madgin's former home in the Red Zone, taken before the earthquakes. She describes the scene in the photograph as, "This is the courtyard that we made, to have an eating place at the back of the house. The tree in the neighbours' was a tree that Pete's brother stole on a school trip up in the mountains from a national park. They planted this red beech in the garden. It became the neighbourhood bird tree and the sound was fantastic in the evenings."

Images, Alexander Turnbull Library

Shows a postman who has just put an 'Earthquake bill' for '$8.5 billion' into the government's letterbox. Context - The New Zealand government will spend about 8.5 billion NZ dollars (6.6 billion U.S. dollars) over the next few years rebuilding Christchurch. New Zealand Finance Minister Bill English said on Tuesday that the Treasury has estimated the direct cost of the two earthquakes is about 5.5 billion NZ dollars), which will be fully provided for in the Budget in May. He said about 3 billion NZ dollars of that relates to thegovernment's share of local government infrastructure, roads, insurance excesses on schools and housing, land remediation from the September quake, demolition, Accidents Compensation Corporation scheme and the business support package. (Xinhuanet 12 April 2011) Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

Surface rupture and slip from the Mw 7.8 2016 Kaikōura Earthquake have been mapped in the region between the Leader and Charwell rivers using field mapping and LiDAR data. The eastern Humps, north Leader and Conway-Charwell faults ruptured the ground surface in the study area. The E-NE striking ‘The Humps’ Fault runs along the base of the Mt Stewart range front, appears to dip steeply NW and intersects the NNW-NNE Leader Fault which itself terminates northwards at the NE striking Conway-Charwell Fault. The eastern Humps Fault is up to the NW and accommodates oblique slip with reverse and right lateral displacement. Net slip on ‘The Humps’ Fault is ≤4 m and produced ≤4 m uplift of the Mt Stewart range during the earthquake. The Leader Fault strikes NNW-NNE with dips ranging from ~10° west to 80° east and accommodated ≤4 m net slip comprising left-lateral and up-to-the-west vertical displacement. Like the Humps west of the study area, surface-rupture of the Leader Fault occurred on multiple strands. The complexity of rupture on the Leader Fault is in part due to the occurrence of bedding-parallel slip within the Cretaceous-Cenozoic sequence. Although the Mt Stewart range front is bounded by ‘The Humps’ Fault, in the study area neither this fault nor the Leader Fault were known to have been active before the earthquake. Fieldwork and trenching investigations are ongoing to characterise the geometry, kinematics and paleoseismic history of the mapped active faults.

Research papers, University of Canterbury Library

The Porter's Pass-Amberley Fault Zone (PPAFZ) is a complex zone of anastomosing faults and folds bounding the south-eastern edge of the transition from subducting Pacific Plate to continental collision on the Australia Plate boundary. This study combines mapping of a 2000 km2 zone from the Southern Alps northeast to the coast near Amberley, 40 km north of metropolitan Christchurch, with an analysis of seismicity and a revision of regional seismic hazard. Three structural styles: 1) a western strike-slip, and 2) a more easterly thrust and reverse domain, pass into 3) a northwest verging fold belt on the northern Canterbury Plains, reflecting the structural levels exposed and the evolving west to east propagation. Basal remnants of a Late Cretaceous-Cenozoic, largely marine sedimentary cover sequence are preserved as outliers that unconformably overlie Mesozoic basement (greywacke and argillite of the Torlesse terrain) in the mountains of the PPAFZ and are underlain by a deeply leached zone which is widely preserved. Structure contouring of the unconformity surface indicates maximum, differential uplift of c.2600 m in the southwest, decreasing to c.1200 m in the coastal fold belt to the northeast. Much lower rates (or reversal) of uplift are evident a few kilometres southeast of the PPAFZ range-front escarpment. The youngest elements of the cover sequence are basement-derived conglomerates of Plio-Pleistocene age preserved on the SE margin. The source is more distant than the intervening mountains of the PPAFZ, probably from the Southern Alps, to the west and northwest. The absence of another regional unconformity on Mesozoic basement, older than Pleistocene, indicates that this uplift is post-Pliocene. Late Pleistocene(<100 kyr) differential uplift rates of c.0.5-2.7 m/kyr from uplifted marine terraces at the east coast, and rates of 2.5-3.3 m/kyr for tectonically-induced river-down cutting further west, suggest that uplift commenced locally during the last 1 Ma, and possibly within the last 0.5 Ma, if average rates are assumed to be uniform over time. Analysis of seismicity, recorded during a 10 week regional survey of micro earthquakes in 1990, identified two seismic zones beneath North Canterbury: 1) a sub-horizontal zone of activity restricted to the upper crust (≤12 km); and 2) a seismic zone in the lower crust (below a ceiling of ≤17 km), that broadens vertically to the north and northwest to a depth of c.40 km, with a bottom edge which dips 10°N and 15°NW, respectively. No events were recorded at depths between 12 km and 17 km, which is interpreted as a relatively aseismic, mid-crustal ductile layer. Marked differences (up to 60°) in the trend of strain axes for events above and below the inferred ductile layer are observed only north of the PPAFZ. A fundamental, north-to-south increase in the Wave-length of major geological structures occurs across the PPAFZ, and is interpreted as evidence that the upper crust beneath the Canterbury Plains is coupled to the lower crust, whereas the upper crust further north is not. Most of the recorded micro earthquakes <12 km deep beneath the PPAFZ have strike-slip mechanisms. It is probable that faults splay upward into the thrusts and folds at the surface as an evolving transpression zone in response to deep shear in basement. There have been no historic surface ruptures of the PPAFZ, but the zone has been characterised historically by frequent small earthquakes. Paleoseismic data (dated landslides and surface ruptures) compiled in this study, indicate a return period of 1500-1900 years between the last two M>7-7.5 earthquakes, and 500-700 years have elapsed since the last. The magnitudes of these events are estimated at c.M7.5, which represents a probable maximum magnitude for the PPAFZ. There are insufficient data to determine whether or not the frequency of large earthquakes conforms to a recognised model of behaviour, but comparison of the paleoseismic data with the historic record of smaller earthquakes, suggests that the magnitudes of the largest earthquakes in this zone are not exponentially distributed. A seismicity model for the PPAFZ (Elder et al., 1991) is reviewed, and a b-value of 1.0 is found to be consistent with the newly acquired paleoseismic data. This b-value reduces the predicted frequency of large earthquakes (M≥7.0) in this zone by a factor of 3.5, while retaining a conservative margin that allows for temporal variations in the frequency of large events and the possibility that the geological database is incomplete, suggesting grounds for revising the hazard model for Christchurch.

Audio, Radio New Zealand

People living in Christchurch's orange zone will have to wait longer than expected for a decision on whether they can remain in their homes, after the Canterbury Earthquake Recovery Authority missed one of its deadlines.

Audio, Radio New Zealand

'Rekindle' is an initiative started since the earthquakes in Canterbury which provides purposeful work for young people by giving them the opportunity to design and fashion furniture from waste wood. Spectrum's Deborah Nation explores 'Rekindle'.

Research papers, University of Canterbury Library

This report provides an initial overview and gap analysis of the multi-hazards interactions that might affect fluvial and pluvial flooding (FPF) hazard in the Ōpāwaho Heathcote catchment. As per the terms of reference, this report focuses on a one-way analysis of the potential effects of multi-hazards on FPF hazard, as opposed to a more complex multi-way analysis of interactions between all hazards. We examined the relationship between FPF hazard and hazards associated with the phenomena of tsunamis; coastal erosion; coastal inundation; groundwater; earthquakes; and mass movements. Tsunamis: Modelling research indicates the worst-case tsunami scenarios potentially affecting the Ōpāwaho Heathcote catchment are far field. Under low probability, high impact tsunami scenarios waves could travel into Pegasus Bay and the Avon-Heathcote Estuary Ihutai, reaching the mouth and lower reaches of the Heathcote catchment and river, potentially inundating and eroding shorelines in sub-catchments 1 to 5, and temporarily blocking fluvial drainage more extensively. Any flooding infrastructure or management actions implemented in the area of tsunami inundation would ideally be resilient to tsunami-induced inundation and erosion. Model results currently available are a first estimate of potential tsunami inundation under contemporary sea and land level conditions. In terms of future large tsunami events, these models likely underestimate effects in riverside sub-catchments, as well as effects under future sea level, shoreline and other conditions. Also of significance when considering different FPF management structures, it is important to be mindful that certain types of flood structures can ‘trap’ inundating water coming from ocean directions, leading to longer flood durations and salinization issues. Coastal erosion: Model predictions indicate that sub-catchments 1 to 3 could potentially be affected by coastal erosion by the timescale of 2065, with sub-catchments 1-6 predicted to be potentially affected by coastal erosion by the time scale of 2115. In addition, the predicted open coast effects of this hazard should not be ignored since any significant changes in the New Brighton Spit open coast would affect erosion rates and exposure of the landward estuary margins, including the shorelines of the Ōpāwaho Heathcote catchment. Any FPF flooding infrastructure or management activities planned for the potentially affected sub-catchments needs to recognise the possibility of coastal erosion, and to have a planned response to the predicted potential shoreline translation. Coastal inundation: Model predictions indicate coastal inundation hazards could potentially affect sub-catchments 1 to 8 by 2065, with a greater area and depth of inundation possible for these same sub-catchments by 2115. Low-lying areas of the Ōpāwaho Heathcote catchment and river channel that discharge into the estuary are highly vulnerable to coastal inundation since elevated ocean and estuary water levels can block the drainage of inland systems, compounding FPF hazards. Coastal inundation can overwhelm stormwater and other drainage network components, and render river dredging options ineffective at best, flood enhancing at worst. A distinction can be made between coastal inundation and coastal erosion in terms of the potential impacts on affected land and assets, including flood infrastructure, and the implications for acceptance, adaptation, mitigation, and/or modification options. That is, responding to inundation could include structural and/or building elevation solutions, since unlike erosion, inundation does not necessarily mean the loss of land. Groundwater: Groundwater levels are of significant but variable concern when examining flooding hazards and management options in the Ōpāwaho Heathcote catchment due to variability in soils, topographies, elevations and proximities to riverine and estuarine surface waterbodies. Much of the Canterbury Plains part of the Ōpāwaho Heathcote catchment has a water table that is at a median depth of <1m from the surface (with actual depth below surface varying seasonally, inter-annually and during extreme meteorological events), though the water table depth rapidly shifts to >6m below the surface in the upper Plains part of the catchment (sub-catchments 13 to 15). Parts of Waltham/Linwood (sub-catchments 5 & 6) and Spreydon (sub-catchment 10) have extensive areas with a particularly high water table, as do sub-catchments 18, 19 and 20 south of the river. In all of the sub-catchments where groundwater depth below surface is shallow, it is necessary to be mindful of cascading effects on liquefaction hazard during earthquake events, including earthquake-induced drainage network and stormwater infrastructure damage. In turn, subsidence induced by liquefaction and other earthquake processes during the CES directly affected groundwater depth below surface across large parts of the central Ōpāwaho Heathcote catchment. The estuary margin of the catchment also faces increasing future challenges with sea level rise, which has the potential to elevate groundwater levels in these areas, compounding existing liquefaction and other earthquake associated multi-hazards. Any increases in subsurface runoff due to drainage system, development or climate changes are also of concern for the loess covered hill slopes due to the potential to enhance mass movement hazards. Earthquakes: Earthquake associated vertical ground displacement and liquefaction have historically affected, or are in future predicted to affect, all Ōpāwaho Heathcote sub-catchments. During the CES, these phenomena induced a significant cascades of changes in the city’s drainage systems, including: extensive vertical displacement and liquefaction induced damage to stormwater ‘greyware’, reducing functionality of the stormwater system; damage to the wastewater system which temporarily lowered groundwater levels and increased stormwater drainage via the wastewater network on the one hand, creating a pollution multi-hazard for FPF on the other hand; liquefaction and vertical displacement induced river channel changes affected drainage capacities; subsidence induced losses in soakage and infiltration capacities; changes occurred in topographic drainage conductivity; estuary subsidence (mainly around the Ōtākaro Avon rivermouth) increased both FPF and coastal inundation hazards; estuary bed uplift (severe around the Ōpāwaho Heathcote margins), reduced tidal prisms and increased bed friction, producing an overall reduction the waterbody’s capacity to efficiently flush catchment floodwaters to sea; and changes in estuarine and riverine ecosystems. All such possible effects need to be considered when evaluating present and future capacities of the Ōpāwaho Heathcote catchment FPF management systems. These phenomena are particularly of concern in the Ōpāwaho Heathcote catchment since stormwater networks must deal with constraints imposed by stream and river channels (past and present), estuarine shorelines and complex hill topography. Mass movements: Mass movements are primarily a risk in the Port Hills areas of the Ōpāwaho Heathcote catchment (sub-catchments 1, 2, 7, 9, 11, 16, 21), though there are one or two small but susceptible areas on the banks of the Ōpāwaho Heathcote River. Mass movements in the form of rockfalls and debris flows occurred on the Port Hills during the CES, resulting in building damage, fatalities and evacuations. Evidence has also been found of earthquake-triggered tunnel gully collapsesin all Port Hill Valleys. Follow-on effects of these mass movements are likely to occur in major future FPF and other hazard events. Of note, elevated groundwater levels, coastal inundation, earthquakes (including liquefaction and other effects), and mass movement exhibit the most extensive levels of multi-hazard interaction with FPF hazard. Further, all of the analysed multi-hazard interactions except earthquakes were found to consistently produce increases in the FPF hazard. The implications of these analyses are that multihazard interactions generally enhance the FPF hazard in the Ōpāwaho Heathcote catchment. Hence, management plans which exclude adjustments for multi-hazard interactions are likely to underestimate the FPF hazard in numerous different ways. In conclusion, although only a one-way analysis of the potential effects of selected multi-hazards on FPF hazard, this review highlights that the Ōpāwaho Heathcote catchment is an inherently multi- hazard prone environment. The implications of the interactions and process linkages revealed in this report are that several significant multi-hazard influences and process interactions must be taken into account in order to design a resilient FPF hazard management strategy.