Search

found 455 results

Images, UC QuakeStudies

A photograph of the badly-damaged John Bull Cycles building on the corner of Colombo Street and Tuam Street. Most of the building's facade has fallen away and it has been cordoned off with wire fencing. Signs indicating that the business has relocated can be seen in the window.

Images, UC QuakeStudies

The McKenzie and Willis building on High Street with damage to the top storey. The side wall has crumbled, exposing the inside of the building where the roof has been propped up by scaffolding. The front facade of the building is also damaged and is held upright by steel bracing.

Images, UC QuakeStudies

The Oxford Terrace Baptist Church with cracks on the front facade. Bracing has been placed under the roof and at the front of the church to support the building and limit further damage from aftershocks. A cordon has been made around the building with fencing and road cones.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Loyal Benevolent Lodge on Canon Street. The top of the façade has crumbled, and the bricks have fallen oto the ground, taking the awning with them. Plastic fencing has been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of the badly-damaged John Bull Cycles building on the corner of Colombo Street and Tuam Street. Most of the building's facade has fallen away and it has been cordoned off with wire fencing. Signs indicating that the business has relocated can be seen in the window.

Images, UC QuakeStudies

A photograph of the damaged former Lyttelton Borough Council Chambers on the north-east corner of the intersection between Sumner Road and Oxford Street. The top of the facade has crumbled onto the street below and wire fencing has been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of the front of the badly-damaged ChristChurch Cathedral. The Rose Window has been removed and steel bracing is holding up the remains of the front facade. A large pile of rubble from the partially-demolished tower can be see to the left.

Images, UC QuakeStudies

A photograph showing hoardings and facade scaffolding on the McKenzie and Willis building. The hoardings feature images from phase 2 of the All Right? campaign, which sought to promote the 'Five Ways To Wellbeing' by asking simple, open-ended questions related to wellbeing.

Images, UC QuakeStudies

The facade of the building housing the Daily Bagel and the Covent Fruit Centre has fallen away, leaving the building unstable and dangerous. The front wall has toppled onto the footpath leaving a pile of bricks. The front windows of this and surrounding buildings have been spray-painted with USAR codes 'No Go' and the times they were checked.

Images, UC QuakeStudies

A damaged building on Cashel Street near Oxford Terrace. The top of the facade has fallen off the building into the street below, taking the awning with it. Bricks from the building still lie on the footpath where they fell. Above, the windows have been braced with plywood. Wire fencing has been placed around the building as a cordon.

Images, UC QuakeStudies

Samo Coffee Lounge signs decorate the front of The Loons Circus Theatre Company building on Canterbury Street in Lyttelton. The facade of the building is propped up by a timber frame and concrete blocks. Samo Coffee Lounge was run inside the Loons building by a group of former Lyttelton Coffee Company staff.

Images, UC QuakeStudies

A photograph taken near the intersection of Manchester Street, Lichfield Street and High Street. The old Post Office building, now housing C1 Espresso, can be seen in the distance with Ronnie Van Hout's sculpture on the roof. Coloured shipping containers support the remaining front facade of the Excelsior Hotel building.

Audio, Radio New Zealand

Moves towards returning the famed rose window to Christ Church Cathedral begin today. An eighteen-tonne steel frame is being installed onto the cathedral's west facade as part of restoration work. It will eventually housing the rose window. The cathedral was critically damaged in the Christchurch earthquake of 2011. Project director Keith Paterson is in Cathedral Square. He speaks to Susie Ferguson.

Images, UC QuakeStudies

A photograph taken near the intersection of Manchester Street, Lichfield Street and High Street. The old Post Office building, now housing C1 Espresso, can be seen in the distance with Ronnie Van Hout's sculpture on the roof. Coloured shipping containers support the remaining front facade of the Excelsior Hotel building.

Images, UC QuakeStudies

A photograph of the earthquake damage to a building on the corner of Hereford and Madras Street. Sections of the façade have crumbled, bricks spilling onto the road in front. Wire fencing has been used to block off half of Madras Street. In the background, emergency management personnel are working through the rubble of the CTV building site. A digger and a crane are parked on the site.

Images, UC QuakeStudies

A photograph of members of the Wellington Emergency Management Office Emergency Response Team standing in front of an earthquake-damaged building on Lichfield Street. A section of the roof and the façade on the top storey of the building have collapsed and the bricks and other rubble have spilled onto the footpath and street below. USAR codes have been spray-painted on one of the bottom-storey windows and the front door.

Images, UC QuakeStudies

A photograph of the earthquake damage to Café Valentino on Colombo Street. The façade of the closest section of the building has collapsed and the bricks have spilled onto the awning below. The same section of the awning has broken under the weight of the bricks and is resting against the ground. Bricks and other rubble cover the other sections of the awning and have spilled onto the footpath and street in the distance.

Images, UC QuakeStudies

The Cathedral of the Blessed Sacrament after the dome was removed. Large cracks are visible in the walls and in the dome's supporting structure, and the facade is supported by haybales and shipping containers. The photographer comments, "The main dome of the Cathedral of the Blessed Sacrament became unsafe after the February Christchurch earthquake - workmen have slowly been dismantling it. Now we are just left with the cracked and twisted walls that supported the beautiful dome".

Images, UC QuakeStudies

Damaged buildings on Manchester Street. The facades have fallen, crushing the awnings below. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones. Heading first along Manchester Street, buildings that were already heavily damaged were now completely written off".

Research papers, Victoria University of Wellington

The suburb of New Brighton in Christchurch Aotearoa was once a booming retail sector until the end of its exclusivity to Saturday shopping in 1980 and the aftermath of the devastating 2011 Christchurch earthquake. The suburb of New Brighton was hit particularly hard and fell into economic collapse, partly brought on by the nature of its economic structure. This implosion created an urban crisis where people and businesses abandoned the suburb and its once-booming commercial economy. As a result, New Brighton has been left with the residue of abandoned infrastructure and commercial propaganda such as billboards, ATM machines, commercial facades, and shopping trolleys that as abandoned fragments, no longer contribute to culture, society and the economy. This design-led research investigation proposes to repurpose the broken objects that were left behind. By strategically selecting objects that are symbols of the root cause of the economic devastation, the repurposed and re-contextualised fragments will seek to allegorically expose the city’s destructive economic narrative, while providing a renewed sense of place identity for the people. This design-led thesis investigation argues that the seemingly innocuous icons of commercial industry, such as billboards, ATM machines, commercial facades, and shopping trolleys, are intended to act as lures to encourage people to spend money; ultimately, these urban and architectural lures can contribute to economic devastation. The aim of this investigation is to repurpose abandoned fragments of capitalist infrastructure in ways that can help to unveil new possibilities for a disrupted community and enhance their awareness of what led to the urban disruption. The thesis proposes to achieve this research aim by exploring three principal research objectives: 1) to assimilate and re-contextualise disconnected urban fragments into new architectural interventions; 2) to anthropomorphise these new interventions so that they are recognisable as architectural ‘inhabitants’, the storytellers of the urban context; and 3) to curate these new architectural interventions in ways that enable a community-scale allegorical and didactic experience to be recognised.

Images, Alexander Turnbull Library

A man struggles to hold upright a rigid and obstinate man who is shaking like an earthquake. The man pushing says 'That's NOT what we meant by quake strengthening Aaron!' Context: Aaron Gilmore is a councillor, a new councillor, and has been bucking the trend when it comes to voting for the CEO Tony Marryatt who is tied up with CERA, the canterbury earthquake authority, by publicly making his personal views known to the public on radio etc before the voting has been cast. Councillors are meant to present an unbiased facade when it comes to voting. Gilmore was talking to the media and in obvious support of Marryatt....the result being that there was pressure on Gilmore to abstain from voting and stand down from the process. Quantity: 1 digital cartoon(s).

Research papers, The University of Auckland Library

The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal mesh sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a snapshot of the performed experimental program and the test results and a preliminary proposed pull-out capacity of adhesive anchors are presented herein. http://www.confer.co.nz/nzsee/ VoR - Version of Record

Research papers, University of Canterbury Library

Observations made in past earthquakes, in New Zealand and around the world, have highlighted the vulnerability of non-structural elements such as facades, ceilings, partitions and services. Damage to these elements can be life-threatening or jeopardise egress routes but typically, the main concern is the cost and time associated with repair works. The Insurance Council of New Zealand highlighted the substantial economic losses in recent earthquakes due to poor performance of non-structural elements. Previous inspections and research have attributed the damage to non-structural elements principally to poor coordination, inadequate or lack of seismic restraints and insufficient clearances to cater for seismic actions. Secondary issues of design responsibility, procurement and the need for better alignment of the various Standards have been identified. In addition to the compliance issues, researchers have also demonstrated that current code provisions for non-structural elements, both in New Zealand and abroad, may be inadequate. This paper first reviews the damage observed against the requirements of relevant Standards and the New Zealand Building Code, and it appears that, had the installations been compliant, the cost of repair and business interruption would have been substantially less. The second part of the paper highlights some of the apparent shortcomings with the current design process for non-structural elements, points towards possible alternative strategies and identifies areas where more research is deemed necessary. The challenge of improving the seismic performance of non-structural elements is a complex one across a diverse construction industry. Indications are that the New Zealand construction industry needs to completely rethink the delivery approach to ensure an integrated design, construction and certification process. The industry, QuakeCentre, QuakeCoRE and the University of Canterbury are presently working together to progress solutions. Indications are that if new processes can be initiated, better performance during earthquakes will be achieved while delivering enhanced building and business resilience.