Search

found 655 results

Images, UC QuakeStudies

A digitally manipulated image of a broken window. The photographer comments, "There is hardly anything left of Christchurch's proud heritage buildings. Most older buildings were made of brick and though they should have had improvements to make them withstand a medium earthquake most did not. They were badly damaged when hit with a series of earthquakes that were up to 2.2g at the epicentre and 1.88g in the City".

Images, UC QuakeStudies

A digitally manipulated image of two stained glass windows. The photographer comments, "This is an abstract of the stained glass window of St Peter's Church in Christchurch, New Zealand. The church was seriously damaged in the Christchurch earthquake".

Videos, UC QuakeStudies

A video of an interview with Jeremy and Tania Tomkins about their living situation after the 22 February 2011 earthquake. The family of four were forced to move into their garage after the earthquake damaged their New Brighton home.

Research papers, University of Canterbury Library

Drywalls are the typical infill or partitions used in new structures. They are usually located within structural frames and/or between upper and lower floor slabs in buildings. Due to the materials used in their construction, unlike masonry blocks, they can be considered as light non-structural infill/partition walls. These types of walls are especially popular in New Zealand and the USA. In spite of their popularity, little is known about their in-plane cyclic behaviour when infilled within a structural frame. The cause of this lack of knowledge can be attributed to the typical assumption that they are weak non-structural elements and are not expected to interact with the surrounding structural system significantly. However, recent earthquakes have repeatedly shown that drywalls interact with the structure and suffer severe damage at very low drift levels. In this paper, experimental test results of two typical drywall types (steel and timber framed) are reported in order to gather further information on; i) their reverse cyclic behaviour, ii) inter-storey drift levels at which they suffer different levels of damage, iii) the level of interaction with the surrounding structural frame system. The drywall specimens were tested using quasi-static reverse cyclic testing protocols within a full scale precast RC frame at the Structures Laboratory of the University of Canterbury.

Videos, UC QuakeStudies

A video of an interview with Bruce Greenhalgh about the experiences of Smiths Sports Shoes after the 2010 and 2011 earthquakes. The business had to move from Moorhouse Avenue after the 4 September 2010 earthquake to Montreal Street. The 22 February 2011 earthquake then damaged their building on Montreal Street, forcing them to move again.

Images, Canterbury Museum

One white over-painted hand-made electric guitar made primarily from ash and maple timbers, also incorporating wood from a variety of historic buildings in Canterbury damaged or destroyed in the 2010 - 2011 earthquakes including the Arts Centre, Kutwell’s Warehouse, Lyttleton main street pub, Timeball Station, Carlton Hotel, Merivale shops, bui...

Images, UC QuakeStudies

Members of the public view the damaged tower of Christ Church Cathedral. Bracing has been placed on the front wall to the right to limit further damage. In the centre of the crowd stands a wire cage filled with stones. After the earthquake, love notes to Christchurch were written on the stones.