Search

found 446 results

Videos, UC QuakeStudies

A video of a presentation by Dr Sarah Beaven during the Social Recovery Stream of the 2016 People in Disasters Conference. The presentation is titled, "Leading and Coordinating Social Recovery: Lessons from a central recovery agency".The abstract for this presentation reads as follows: This presentation provides an overview of the Canterbury Earthquake Recovery Authority's Social Recovery Lessons and Legacy project. This project was commissioned in 2014 and completed in December 2015. It had three main aims: to capture Canterbury Earthquake Recovery Authority's role in social recovery after the Canterbury earthquakes, to identify lessons learned, and to disseminate these lessons to future recovery practitioners. The project scope spanned four Canterbury Earthquake Recovery Authority work programmes: The Residential Red Zone, the Social and Cultural Outcomes, the Housing Programme, and the Community Resilience Programme. Participants included both Canterbury Earthquake Recovery Authority employees, people from within a range of regional and national agencies, and community and public sector organisations who worked with Canterbury Earthquake Recovery Authority over time. The presentation will outline the origin and design of the project, and present some key findings.

Videos, UC QuakeStudies

A video of a presentation by Jane Morgan and Annabel Begg during the Social Recovery Stream of the 2016 People in Disasters Conference. The presentation is titled, "Monitoring Social Recovery in Greater Christchurch".The abstract for this presentation reads as follows: This presentation provides an overview of the Canterbury Earthquake Recovery Authority's Social Recovery Lessons and Legacy project. This project was commissioned in 2014 and completed in December 2015. It had three main aims: to capture Canterbury Earthquake Recovery Authority's role in social recovery after the Canterbury earthquakes, to identify lessons learned, and to disseminate these lessons to future recovery practitioners. The project scope spanned four Canterbury Earthquake Recovery Authority work programmes: The Residential Red Zone, the Social and Cultural Outcomes, the Housing Programme, and the Community Resilience Programme. Participants included both Canterbury Earthquake Recovery Authority employees, people from within a range of regional and national agencies, and community and public sector organisations who worked with Canterbury Earthquake Recovery Authority over time. The presentation will outline the origin and design of the project, and present some key findings.

Research papers, The University of Auckland Library

Courage has remained an elusive concept to define despite having been in the English lexicon for hundreds of years. The Canterbury earthquake sequence that began in 2010 provided a unique context in which to undertake research that would contribute to further conceptualisation of courage. This qualitative study was undertaken in Christchurch, New Zealand, with adults over the age of 70 who experienced the Canterbury earthquakes and continued to live in the Canterbury region. The population group was chosen because it is an under researched group in post-disaster environments, and one that offers valuable insights because of members' length and breadth of life experiences, and likely reminiscent and reflective life stage. A constructivist grounded theory approach was utilised, with data collected through semi-structured focus groups and individual key informant interviews. The common adverse experience of the participants initially discussed was the earthquakes, which was followed by exploration of courage in their other lived experiences. Through an inductive process of data analysis, conceptual categories were identified, which when further analysed and integrated, contributed to a definition of courage. The definition was subsequently discussed with social work professionals who had remained working in the Canterbury region after experiencing the earthquakes. From the examples and the actions described within these, a process model was developed to support the application of courage. The model includes five steps: recognising an adverse situation, making a conscious decision to act, accessing sources of motivation, mastering emotion and taking action. Defining and utilising courage can help people to face adversity associated with everyday life and ultimately supports self-actualisation and self-development. Recommendations from the study include teaching about courage within social work education, utilising the process model within supervision, intentionally involving older adults in emergency management planning and developing specific social work tasks in hospital settings following a disaster.

Images, UC QuakeStudies

A photograph of a camera operator filming members of Crack'd for Christchurch as they work on their armchair artwork.Crack'd for Christchurch comments, "August 2014. Mike Thorpe and camera man filming Flora for Seven Sharp in anticipation of the launch. Only 4 weeks to go. No grout on the chair yet. From left: Sharon Wilson, Marie Hudson, and Jennie Cooper."

Articles, UC QuakeStudies

A PDF copy of two bus back designs from All Right?'s 'Take a Breather' campaign. The design features a plethora of everyday images, including roadworks, construction, work and leisure activities. An image from phase 2 of the All Right? campaign and Christmas-themed images are also included. In the centre are the words, "Take a breather... Canterbury's a busy place. What could you do to recharge?".

Articles, UC QuakeStudies

A PDF copy of two bus back designs from All Right?'s 'Take a Breather' campaign. The design features a plethora of everyday images, including roadworks, construction, work and leisure activities. Images from phase 2 of the All Right? campaign and Christmas-themed images are also included. In the centre are the words, "Take a breather... Canterbury's a busy place. What could you do to recharge?".

Images, UC QuakeStudies

Damaged workshops in the Red Bus depot on Fitzgerald Avenue. The brick walls have partially crumbled. In the background is the Cathedral of the Blessed Sacrament, with its dome partly deconstructed. The photographer comments, "This photo was taken recently on Fitzgerald Avenue. Again, it's amazing how close you can get to buildings that look like they are about to collapse. In the background, you can see that work has begun to remove the dome on top of the damaged Cathedral of he Blessed Sacrament".

Images, UC QuakeStudies

A photograph of a camera operator filming members of Crack'd for Christchurch as they work on their armchair artwork.Crack'd for Christchurch comments, "August 2014. Mike Thorpe and camera man filming Flora for Seven Sharp in anticipation of the launch. Only 4 weeks to go. No grout on the chair yet. From left: Helen Campbell, Jennie Cooper, and Marie Hudson."

Images, UC QuakeStudies

Damaged workshops in the Red Bus depot on Fitzgerald Avenue. The brick walls have partially crumbled. In the background is the Cathedral of the Blessed Sacrament, with its dome partly deconstructed. The photographer comments, "This photo was taken recently on Fitzgerald Avenue. Again, it's amazing how close you can get to buildings that look like they are about to collapse. In the background, you can see that work has begun to remove the dome on top of the damaged Cathedral of he Blessed Sacrament".

Images, UC QuakeStudies

Detail of damage to a house in Richmond. A double-brick wall has collapsed, and a gap is visible between the house and its foundation. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The house and the concrete patio are now 15cm apart. The house took half the dining room's remaining bricks with it as it jumped off the foundations. It gives a good visual indication of the displacement".

Images, UC QuakeStudies

Damage to a residential property in Richmond. The brick wall of the garage has collapse inward, and the roof fallen in on top of it. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The neighbours behind us used the kayak to get in to their house - it's flooded by Dudley Creek which runs behind the block, plus major liquefaction. Our old garage provides a good spot to park it".

Images, UC QuakeStudies

Detail of damage to a house in Richmond. A double-brick wall has collapsed. A wire loop which formerly tied the two layers of bricks together has pulled out from one of the layers, showing how the two parts of the wall moved apart during the shaking. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The remaining double brick by the back door has been further smashed and twisted".

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 6 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 6th instalment features the ‘new land’ created by the earthquake uplift of the coastline, recreational uses of beaches in Marlborough, and pāua survey work and hatchery projects with our partners in Kaikōura.

Images, eqnz.chch.2010

Earthquake damaged building on a Walk around the city, May 1, 2014 Christchurch New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department store. It featured the South Island's first escalator, which...

Images, eqnz.chch.2010

Earthquake damaged building on a Walk around the city, May 1, 2014 Christchurch New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department store. It featured the South Island's first escalator, which...

Images, eqnz.chch.2010

On a walk around the city to catch up on what is happening May 29, 2014 Christchurch New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department store. It featured the South Island's first escalator, w...

Videos, UC QuakeStudies

A video of Ladi6 and All Right? staff member Ciaran Fox "getting out and about" in Christchurch, talking to local street artist Jacob Yikes about his work and other street art popping up around the CBD. The interview was shot in front of one of Yikes' murals on Tuam Street. All Right? uploaded the video to YouTube on 21 April 2015 and posted a link to the video ton their Facebook Timeline on 28 April 2015 at 4:00pm.

Articles, UC QuakeStudies

A PDF copy of four hoarding designs for Christchurch Hospital. The images read, "Noticed anything awesome lately? Heads up... a helipad is coming!", "Good things are happening here. A new Emergency Department is on its way", "Moving your body can move your mood. Making you strong inside and out - just like our new buildings!" and "What could you do to recharge? Connecting with others can be a real pick-me-up whether you're at work or enjoying a well-earned catch up".

Videos, UC QuakeStudies

A video run-through of the interactive documentary Obrero. Obrero ('worker') is an independent multi-platform documentary project. It tells the stories of Filipino rebuild workers temporarily migrating to Christchurch, Aotearoa New Zealand after the earthquake in 2011. The interactive documentary can be explored at https://www.obrerofilm.com/. Norman Zafra is a Filipino journalist-documentary maker and currently a doctoral candidate at the University of Auckland's Media and Communication Department. He has worked as producer, writer, and director of award-winning Philippine TV documentary programmes such as Reporter’s Notebook and I-Witness.

Research papers, University of Canterbury Library

Introduction This poster presents the inferred initial performance and recovery of the water supply network of Christchurch following the 22 February 2011 Mw 6.2 earthquake. Results are presented in a geospatial and temporal fashion. This work strengthens the current understanding of the restoration of such a system after a disaster and quantifies the losses caused by this earthquake in respect with the Christchurch community. Figure 1 presents the topology of the water supply network as well as the spatial distribution of the buildings and their use.

Videos, UC QuakeStudies

A video of a presentation by Ian Campbell, Executive General Manager of the Stronger Christchurch Rebuild Team (SCIRT), during the third plenary of the 2016 People in Disasters Conference. The presentation is titled, "Putting People at the Heart of the Rebuild".The abstract for this presentation reads: On the face of it, the Stronger Christchurch Infrastructure Rebuild Team (SCIRT) is an organisation created to engineer and carry out approximately $2B of repairs to physical infrastructure over a 5-year period. Our workforce consists primarily of engineers and constructors who came from far and wide after the earthquakes to 'help fix Christchurch'. But it was not the technical challenges that drew them all here. It was the desire and ambition expressed in the SCIRT 'what we are here for' statement: 'to create resilient infrastructure that gives people security and confidence in the future of Christchurch'. For the team at SCIRT, people are at the heart of our rebuild programme. This is recognised in the intentional approach SCIRT takes to all aspects of its work. The presentation will touch upon how SCIRT communicated with communities affected by our work and how we planned and coordinated the programme to minimise the impacts, while maximising the value for both the affected communities and the taxpayers of New Zealand and rate payers of Christchurch funding it. The presentation will outline SCIRT's very intentional approach to supporting, developing, connecting, and enabling our people to perform, individually, and collectively, in the service of providing the best outcome for the people of Christchurch and New Zealand.

Research papers, The University of Auckland Library

The research presented in this thesis investigated the environmental impacts of structural design decisions across the life of buildings located in seismic regions. In particular, the impacts of expected earthquake damage were incorporated into a traditional life cycle assessment (LCA) using a probabilistic method, and links between sustainable and resilient design were established for a range of case-study buildings designed for different seismic performance objectives. These links were quantified using a metric herein referred to as the seismic carbon risk, which represents the expected environmental impacts and resource use indicators associated with earthquake damage during buildings’ life. The research was broken into three distinct parts: (1) a city-level evaluation of the environmental impacts of demolitions following the 2010/2011 Canterbury earthquake sequence in New Zealand, (2) the development of a probabilistic framework to incorporate earthquake damage into LCA, and (3) using case-study buildings to establish links between sustainable and resilient design. The first phase of the research focused on the environmental impacts of demolitions in Christchurch, New Zealand following the 2010/2011 Canterbury Earthquake Sequence. This large case study was used to investigate the environmental impact of the demolition of concrete buildings considering the embodied carbon and waste stream distribution. The embodied carbon was considered here as kilograms of CO2 equivalent that occurs on production, construction, and waste management stage. The results clearly demonstrated the significant environmental impacts that can result from moderate and large earthquakes in urban areas, and the importance of including environmental considerations when making post-earthquake demolition decisions. The next phase of the work introduced a framework for incorporating the impacts of expected earthquake damage based on a probabilistic approach into traditional LCA to allow for a comparison of seismic design decisions using a carbon lens. Here, in addition to initial construction impacts, the seismic carbon risk was quantified, including the impacts of seismic repair activities and total loss scenarios assuming reconstruction in case of non-reparability. A process-based LCA was performed to obtain the environmental consequence functions associated with structural and non-structural repair activities for multiple environmental indicators. In the final phase of the work, multiple case-study buildings were used to investigate the seismic consequences of different structural design decisions for buildings in seismic regions. Here, two case-study buildings were designed to multiple performance objectives, and the upfront carbon costs, and well as the seismic carbon risk across the building life were compared. The buildings were evaluated using the framework established in phase 2, and the results demonstrated that the seismic carbon risk can significantly be reduced with only minimal changes to the upfront carbon for buildings designed for a higher base shear or with seismic protective systems. This provided valuable insight into the links between resilient and sustainable design decisions. Finally, the results and observations from the work across the three phases of research described above were used to inform a discussion on important assumptions and topics that need to be considered when quantifying the environmental impacts of earthquake damage on buildings. These include: selection of a non-repairable threshold (e.g. a value beyond which a building would be demolished rather than repaired), the time value of carbon (e.g. when in the building life the carbon is released), the changing carbon intensity of structural materials over time, and the consideration of deterministic vs. probabilistic results. Each of these topics was explored in some detail to provide a clear pathway for future work in this area.

Images, UC QuakeStudies

A photograph of members of Crack'd for Christchurch working in their workshop. A number of mosaics of flowers and leaves have been laid out on the table in front of them. Boxes of broken china are organised on the shelf behind.Crack'd for Christchurch comments, "Back at the workshop, flower making continues. You can see a table covered with flower motifs, looking amazing. We had to make the flowers at home in the evenings as we all worked during the day. After much trial and error our flower experts (Helen, Sharon, and Jennie) came up with a clever way to attach the tiny pieces to mesh, so they could be transferred to the chair easily. From left: Sharon Wilson, Helen Campbell, and Shirley Walden."

Images, UC QuakeStudies

Damage to River Road in Richmond. The road is badly cracked and slumped, and is closed off with a row of road cones tied with warning tape. The word "closed" has been spray painted on the road surface. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. River Rd was again subject to severe lateral spreading. The river is still grey with silt, the road is ripped and sunken, and power poles lean at random angles. The red car belonged to a postie, who had to come back with a tow truck to extricate the car from the hole that had opened underneath it. Looking along River Road to the north-east. Taken outside 79 Medway St".

Research papers, The University of Auckland Library

Following the devastation of the Canterbury earthquake sequence a unique opportunity exists to rebuild and restructure the city of Christchurch, ensuring that its infrastructure is constructed better than before and is innovative. By installing an integrated grid of modern sensor technologies into concrete structures during the rebuild of the Christchurch CBD, the aim is to develop a network of self-monitored ‘digital buildings’. A diverse range of data will be recorded, potentially including parameters such as concrete stresses, strains, thermal deformations, acoustics and the monitoring of corrosion of reinforcement bars. This procedure will allow an on-going complete assessment of the structure’s performance and service life, both before and after seismic activity. The data generated from the embedded and surface mounted sensors will be analysed to allow an innovative and real-time health monitoring solution where structural integrity is continuously known. This indication of building performance will allow the structure to alert owners, engineers and asset managers of developing problems prior to failure thresholds being reached. A range of potential sensor technologies for monitoring the performance of existing and newly constructed concrete buildings is discussed. A description of monitoring work conducted on existing buildings during the July 2013 Cook Strait earthquake sequence is included, along with details of current work that investigates the performance of sensing technologies for detecting crack formation in concrete specimens. The potential market for managing the real-time health of installed infrastructure is huge. Civil structures all over the world require regular visual inspections in order to determine their structural integrity. The information recorded during the Christchurch rebuild will generate crucial data sets that will be beneficial in understanding the behaviour of concrete over the complete life cycle of the structure, from construction through to operation and building repairs until the time of failure. VoR - Version of Record

Research papers, The University of Auckland Library

The 2010 Darfield earthquake is the largest earthquake on record to have occurred within 40 km of a major city and not cause any fatalities. In this paper the authors have reflected on their experiences in Christchurch following the earthquake with a view to what worked, what didn’t, and what lessons can be learned from this for the benefit of Australian earthquake preparedness. Owing to the fact that most of the observed building damage occurred in Unreinforced Masonry (URM) construction, this paper focuses in particular on the authors’ experience conducting rapid building damage assessment during the first 72 hours following the earthquake and more detailed examination of the performance of unreinforced masonry buildings with and without seismic retrofit interventions.

Research papers, University of Canterbury Library

This poster presents preliminary results of ongoing experimental campaigns at the Universities of Auckland and Canterbury, aiming at investigating the seismic residual capacity of damaged reinforced concrete plastic hinges, as well as the effectiveness of epoxy injection techniques for restoring their stiffness, energy dissipation, and deformation capacity characteristics. This work is part of wider research project which started in 2012 at the University of Canterbury entitled “Residual Capacity and Repairing Options for Reinforced Concrete Buildings”, funded by the Natural Hazards Research Platform (NHRP). This research project aims at gaining a better understanding and providing the main end-users and stakeholders (practitioner engineers, owners, local and government authorities, insurers, and regulatory agencies) with comprehensive evidence-based information and practical guidelines to assess the residual capacity of damaged reinforced concrete buildings, as well as to evaluate the feasibility of repairing and thus support their delicate decision-making process of repair vs. demolition or replacement.

Videos, UC QuakeStudies

A video of the keynote presentation by Sir John Holmes, during the first plenary of the 2016 People in Disasters Conference. Holmes is the former United Nations Under-Secretary-General for Humanitarian Affairs and Emergency Relief Coordinator, the current Director of Ditchley Foundation, and the chair of the Board of the International Rescue Committee in the UK. The presentation is titled, "The Politics of Humanity: Reflections on international aid in disasters".The abstract for this presentation reads as follows: As United Nations Under-Secretary-General for Humanitarian Affairs and Emergency Relief Coordinate from 2007-2010, Sir John Holmes was heavily involved in the coordination of air provision to countries struck by natural and man-made disasters, raising the necessary funds, and the elaboration of humanitarian policy. The international humanitarian system is fragmented and struggling to cope with rising demands from both conflicts such as that in Syria, and the growing effects of climate change. Sir John will talk about what humanitarian aid can and cannot achieve, the frustrations of getting aid through when access may be difficult or denied, and the need to ensure that assistance encompasses protection of civilians and efforts to get them back on their feet, as well as the delivery of essential short term items such as food, water, medical care and shelter. He will discuss the challenges involved in trying to make the different agencies - UN United Nations, non-government organisations and the International Red Cross/Crescent movement - work together effectively. He will reveal some of the problems in dealing with donor and recipient governments who often have their own political and security agendas, and may be little interested in the necessary neutrality and independence of humanitarian aid. He will illustrate these points by practical examples of political and other dilemmas from aid provision in natural disasters such as Cyclone Nargis in Myanmar in 2009, and the Haiti earthquake of 2010, and in conflict situations such as Darfur, Afghanistan and Sri Lanka in the past, and Syria today. He will also draw conclusions and make recommendations about how humanitarian aid might work better, and why politicians and others need to understand more clearly the impartial space required by humanitarian agencies to operate properly.

Research papers, The University of Auckland Library

Soil-structure interaction (SSI) has been widely studied during the last decades. The influence of the properties of the ground motion, the structure and the soil have been addressed. However, most of the studies in this field consider a stand-alone structure. This assumption is rarely justifiable in dense urban areas where structures are built close to one another. The dynamic interaction between adjacent structures has been studied since the early 1970s, mainly using numerical and analytical models. Even though the early works in this field have significantly contributed to understanding this problem, they commonly consider important simplifications such as assuming a linear behaviour of the structure and the soil. Some experimental works addressing adjacent structures have recently been conducted using geotechnical centrifuges and 1g shake tables. However, further research is needed to enhance the understanding of this complex phenomenon. A particular case of SSI is that of structures founded in fine loose saturated sandy soil. An iconic example was the devastating effects of liquefaction in Christchurch, New Zealand, during the Canterbury earthquake in 2011. In the case of adjacent structures on liquefiable soil, the experimental evidence is even scarcer. The present work addresses the dynamic interaction between adjacent structures by performing multiple experimental studies. The work starts with two-adjacent structures on a small soil container to expose the basics of the problem. Later, results from tests considering a more significant number of structures on a big laminar box filled with sand are presented. Finally, the response of adjacent structures on saturated sandy soil is addressed using a geotechnical centrifuge and a large 1g shake table. This research shows that the acceleration, lateral displacement, foundation rocking, damping ratio, and fundamental frequency of the structure of focus are considerably affected by the presence of neighbouring buildings. In general, adjacent buildings reduced the dynamic response of the structure of focus on dry sand. However, the acceleration was amplified when the structures had a similar fundamental frequency. In the case of structures on saturated sand, the presence of adjacent structures reduced the liquefaction potential. Neighbouring structures on saturated sand also presented larger rotation of the footing and lateral displacement of the top mass than that of the stand-alone case.

Videos, UC QuakeStudies

A video of a presentation by Matthew Pratt during the Resilience and Response Stream of the 2016 People in Disasters Conference. The presentation is titled, "Investing in Connectedness: Building social capital to save lives and aid recovery".The abstract for this presentation reads as follows: Traditionally experts have developed plans to prepare communities for disasters. This presentation discusses the importance of relationship-building and social capital in building resilient communities that are both 'prepared' to respond to disaster events, and 'enabled' to lead their own recovery. As a member of the Canterbury Earthquake Recovery Authority's Community Resilience Team, I will present the work I undertook to catalyse community recovery. I will draw from case studies of initiatives that have built community connectedness, community capacity, and provided new opportunities for social cohesion and neighbourhood planning. I will compare three case studies that highlight how social capital can aid recovery. Investment in relationships is crucial to aid preparedness and recovery.