The city of Christchurch and its surrounds experienced widespread damage due to soil liquefaction induced by seismic shaking during the Canterbury earthquake sequence that began in September 2010 with the Mw7.1 Darfield earthquake. Prior to the start of this sequence, the city had a large network of strong motion stations (SMSs) installed, which were able to record a vast database of strong ground motions. This paper uses this database of strong ground motion recordings, observations of liquefaction manifestation at the ground surface, and data from a recently completed extensive geotechnical site investigation program at each SMS to assess a range of liquefaction evaluation procedures at the four SMSs in the Christchurch Central Business District (CBD). In general, the characteristics of the accelerograms recorded at each SMS correlated well with the liquefaction evaluation procedures, with low liquefaction factors of safety predicted at sites with clear liquefaction identifiers in the ground motions. However, at sites that likely liquefied at depth (as indicated by evaluation procedures and/or inferred from the characteristics of the recorded surface accelerograms), the presence of a non-liquefiable crust layer at many of the SMS locations prevented the manifestation of any surface effects. Because of this, there was not a good correlation between surface manifestation and two surface manifestation indices, the Liquefaction Potential Index (LPI) and the Liquefaction Severity Number (LSN).
This report focuses on the Waimakariri District Council's approach to earthquake recovery which was developed as an Integrated, Community-based Recovery Framework. This approach has been held up as exemplary in a number of fora and has received a great deal of interest and support both nationally and internationally. It has evolved as a result of the September earthquake and the thousands of aftershocks that have followed, along with the regulatory changes that have impacted on building safety and land availability since, but it builds on a set of pre-existing competencies and a well-established organisational culture that focusses on: * Working with communities and each other; * Keeping people informed; * Doing better everyday; * Taking responsibility; * Acting with integrity, honesty and trust. The report identifies, and speaks to, three themes or tensions drawn from either the disaster/emergency management literature or actual cases of recovery practice observed here in Canterbury over the last 2 years. These themes are the: 1. unique position of local government to undertake integrated or ‘holistic’ recovery work with community at the centre, versus the lack of clarity around both community and local government’s role in disaster recovery; 2. general consensus that good local government-community relationships are crucial to recovery processes, versus the lack of practical advice on how best to engage, and engage with, communities post-disaster; and 3. balancing Business as Usual (BaU) with recovery issues.Ministry of Civil Defence and Emergency Management.
After a high-intensity seismic event, inspections of structural damages need to be carried out as soon as possible in order to optimize the emergency management, as well as improving the recovery time. In the current practice, damage inspections are performed by an experienced engineer, who physically inspect the structures. This way of doing not only requires a significant amount of time and high skilled human resources, but also raises the concern about the inspector’s safety. A promising alternative is represented using new technologies, such as drones and artificial intelligence, which can perform part of the damage classification task. In fact, drones can safely access high hazard components of the structures: for instance, bridge piers or abutments, and perform the reconnaissance by using highresolution cameras. Furthermore, images can be automatically processed by machine learning algorithms, and damages detected. In this paper, the possibility of applying such technologies for inspecting New Zealand bridges is explored. Firstly, a machine-learning model for damage detection by performing image analysis is presented. Specifically, the algorithm was trained to recognize cracks in concrete members. A sensitivity analysis was carried out to evaluate the algorithm accuracy by using database images. Depending on the confidence level desired,i.e. by allowing a manual classification where the alghortim confidence is below a specific tolerance, the accuracy was found reaching up to 84.7%. In the second part, the model is applied to detect the damage observed on the Anzac Bridge (GPS coordinates -43.500865, 172.701138) in Christchurch by performing a drone reconnaissance. Reults show that the accuracy of the damage detection was equal to 88% and 63% for cracking and spalling, respectively.
Reinforced concrete buildings that satisfied modern seismic design criteria generally behaved as expected during the recent Canterbury and Kaikoura earthquakes in New Zealand, forming plastic hinges in intended locations. While this meant that life-safety performance objectives were met, widespread demolition and heavy economic losses took place in the aftermath of the earthquakes.The Christchurch central business district was particularly hard hit, with over 60% of the multistorey reinforced concrete buildings being demolished. A lack of knowledge on the post-earthquake residual capacity of reinforced concrete buildings was a contributing factor to the mass demolition.Many aspects related to the assessment of earthquake-damaged reinforced concrete buildings require further research. This thesis focusses on improving the state of knowledge on the post earthquakeresidual capacity and reparability of moderately damaged plastic hinges, with an emphasis on plastic hinges typical of modern moment frame structures. The repair method focussed on is epoxy injection of cracks and patching of spalled concrete. A targeted test program on seventeen nominally identical large-scale ductile reinforced concrete beams, three of which were repaired by epoxy injection following initial damaging loadings, was conducted to support these objectives. Test variables included the loading protocol, the loading rate, and the level of restraint to axial elongation.The information that can be gleaned from post-earthquake damage surveys is investigated. It is shown that residual crack widths are dependent on residual deformations, and are not necessarily indicative of the maximum rotation demands or the plastic hinge residual capacity. The implications of various other types of damage typical of beam and column plastic hinges are also discussed.Experimental data are used to demonstrate that the strength and deformation capacity of plastic hinges with modern seismic detailing are often unreduced as a result of moderate earthquake induced damage, albeit with certain exceptions. Special attention is given to the effects of prior yielding of the longitudinal reinforcement, accounting for the low-cycle fatigue and strain ageing phenomena. A material-level testing program on the low-cycle fatigue behaviour of grade 300E reinforcing steel was conducted to supplement the data available in the literature.A reduction in stiffness, relative to the initial secant stiffness to yield, occurs due to moderate plastic hinging damage. This reduction in stiffness is shown to be correlated with the ductility demand,and a proposed model gives a conservative lower-bound estimate of the residual stiffness following an arbitrary earthquake-type loading. Repair by epoxy injection is shown to be effective in restoring the majority of stiffness to plastic hinges in beams. Epoxy injection is also shown to have implications for the residual strength and elongation characteristics of repaired plastic hinges.
Earthquake Engineering is facing an extraordinarily challenging era, the ultimate target being set at increasingly higher levels by the demanding expectations of our modern society. The renewed challenge is to be able to provide low-cost, thus more widely affordable, high-seismic-performance structures capable of sustaining a design level earthquake with limited or negligible damage, minimum disruption of business (downtime) or, in more general terms, controllable socio-economical losses. The Canterbury earthquakes sequence in 2010-2011 has represented a tough reality check, confirming the current mismatch between societal expectations over the reality of seismic performance of modern buildings. In general, albeit with some unfortunate exceptions, modern multi-storey buildings performed as expected from a technical point of view, in particular when considering the intensity of the shaking (higher than new code design) they were subjected to. As per capacity design principles, plastic hinges formed in discrete regions, allowing the buildings to sway and stand and people to evacuate. Nevertheless, in many cases, these buildings were deemed too expensive to be repaired and were consequently demolished. Targeting life-safety is arguably not enough for our modern society, at least when dealing with new building construction. A paradigm shift towards damage-control design philosophy and technologies is urgently required. This paper and the associated presentation will discuss motivations, issues and, more importantly, cost-effective engineering solutions to design buildings capable of sustaining low-level of damage and thus limited business interruption after a design level earthquake. Focus will be given to the extensive research and developments in jointed ductile connections based upon controlled rocking & dissipating mechanisms for either reinforced concrete and, more recently, laminated timber structures. An overview of recent on-site applications of such systems, featuring some of the latest technical solutions developed in the laboratory and including proposals for the rebuild of Christchurch, will be provided as successful examples of practical implementation of performance-based seismic design theory and technology.
Following the devastating 1931 Hawke's Bay earthquake, buildings in Napier and surrounding areas in the Hawke's Bay region were rebuilt in a comparatively homogenous structural and architectural style comprising the region's famous Art Deco stock. These interwar buildings are most often composed of reinforced concrete two-way space frames, and although they have comparatively ductile detailing for their date of construction, are often expected to be brittle, earthquake-prone buildings in preliminary seismic assessments. Furthermore, the likelihood of global collapse of an RC building during a design-level earthquake became an issue warranting particular attention following the collapse of multiple RC buildings in the February 22, 2011 Christchurch earthquake. Those who value the architectural heritage and future use of these iconic Art Deco buildings - including building owners, tenants, and city officials, among others - must consider how they can be best preserved and utilized functionally given the especially pressing implications of relevant safety, regulatory, and economic factors. This study was intended to provide information on the seismic hazard, geometric weaknesses, collapse hazards, material properties, structural detailing, empirically based vulnerability, and recommended analysis approaches particular to Art Deco buildings in Hawke's Bay as a resource for professional structural engineers tasked with seismic assessments and retrofit designs for these buildings. The observed satisfactory performance of similar low-rise, ostensibly brittle RC buildings in other earthquakes and the examination of the structural redundancy and expected column drift capacities in these buildings, led to the conclusion that the seismic capacity of these buildings is generally underrated in simple, force-based assessments.
The author followed five primary (elementary) schools over three years as they responded to and began to recover from the 2010–2011 earthquakes in and around the city of Christchurch in the Canterbury region of New Zealand. The purpose was to capture the stories for the schools themselves, their communities, and for New Zealand’s historical records. From the wider study, data from the qualitative interviews highlighted themes such as children’s responses or the changing roles of principals and teachers. The theme discussed in this article, however, is the role that schools played in the provision of facilities and services to meet (a) physical needs (food, water, shelter, and safety); and (b) emotional, social, and psychological needs (communication, emotional support, psychological counseling, and social cohesion)—both for themselves and their wider communities. The role schools played is examined across the immediate, short-, medium-, and long-term response periods before being discussed through a social bonding theoretical lens. The article concludes by recommending stronger engagement with schools when considering disaster policy, planning, and preparation http://www.schoolcommunitynetwork.org/SCJ.aspx
During the Christchurch earthquake of February 2011, several midrise buildings of Reinforced Concrete Masonry (RCM) construction achieved performance levels in the range of life safety to near collapse levels. These buildings were subjected to seismic demands higher than the building code requirements of the time and higher than the current New Zealand Loadings Standard (NZS-1170.5:2004). Structural damage to these buildings has been documented and is currently being studied to establish lessons to be learned from their performance and how to incorporate these lessons into future RCM design and construction practices. This paper presents a case study of a six story RCM building deemed to have reached the near collapse performance level. The RCM walls on the 2nd floor failed due to toe crushing reducing the building’s lateral resistance in the east-west direction. A nonlinear dynamic analysis on a 3D model was conducted to simulate the development of the governing failure mechanism. Preliminary analysis results show that the damaged walls were initially under large compression forces from gravity loads which caused increase in their lateral strength and reduced their ductility. After toe crushing failure developed, axial instability of the model was prevented by a redistribution of gravity loads.
During 2010 and 2011, a series of major earthquakes caused widespread damage in the city of Christchurch, New Zealand. The magnitude 6.3 quake in February 2011 caused 185 fatalities. In the ensuing months, the government progressively zoned residential land in Christchurch on the basis of its suitability for future occupation (considering damage from these quakes and future earthquake risk). Over 6,000 homes were placed in the ‘red-zone’, meaning that property owners were forced to sell their land to the Crown. This study analysed patterns of residential mobility amongst thirty-one red-zone households from the suburb of Southshore, Christchurch. Drawing on interviews and surveys, the research traced their experience from the zoning announcement until they had moved to a new residence. The research distinguished between short (before the zoning announcement) and long term (post the red zone ‘deadline’) forms of household relocation. The majority of households in the study were highly resistant to short term movement. Amongst those which did relocate before the zoning decision, the desire to maintain a valued social connection with a person outside of the earthquake environment was often an important factor. Some households also moved out of perceived necessity (e.g. due to lack of power or water). In terms of long-term relocation, concepts of affordability and safety were much more highly valued by the sample when purchasing post-quake property. This resulted in a distinct patterning of post-quake housing location choices. Perceived control over the moving process, relationship with government organisations and insurance companies, and time spent in the red-zone before moving all heavily influenced participants’ disaster experience. Contrary to previous studies, households in this study recorded higher levels of subjective well-being after relocating. The study proposed a typology of movers in the Christchurch post-disaster environment. Four mobility behaviours, or types, are identified: the Committed Stayers (CSs), the Environment Re-Creators (ERCs), the Resigned Acceptors (RAs), and the Opportunistic Movers (OMs). The CSs were defined by their immobility rather than their relocation aspirations, whilst the ERCs attempted to recreate or retain aspects of Southshore through their mobility. The RAs expressed a form of apathy towards the post-quake environment, whereas, on the other hand, the OMs moved relative to pre-earthquake plans, or opportunities that arose from the earthquake itself. Possibilities for further research include examining household adaptability to new residential environments and tracking further mobility patterns in the years following relocation from the red- zone.
Territorial authorities in New Zealand are responding to regulatory and market forces in the wake of the 2011 Christchurch earthquake to assess and retrofit buildings determined to be particularly vulnerable to earthquakes. Pending legislation may shorten the permissible timeframes on such seismic improvement programmes, but Auckland Council’s Property Department is already engaging in a proactive effort to assess its portfolio of approximately 3500 buildings, prioritise these assets for retrofit, and forecast construction costs for improvements. Within the programme structure, the following varied and often competing factors must be accommodated: * The council’s legal, fiscal, and ethical obligations to the people of Auckland per building regulations, health and safety protocols, and economic growth and urban development planning strategies; * The council’s functional priorities for service delivery; * Varied and numerous stakeholders across the largest territorial region in New Zealand in both population and landmass; * Heritage preservation and community and cultural values; and * Auckland’s prominent economic role in New Zealand’s economy which requires Auckland’s continued economic production post-disaster. Identifying those buildings most at risk to an earthquake in such a large and varied portfolio has warranted a rapid field assessment programme supplemented by strategically chosen detailed assessments. Furthermore, Auckland Council will benefit greatly in time and resources by choosing retrofit solutions, techniques, and technologies applicable to a large number of buildings with similar configurations and materials. From a research perspective, the number and variety of buildings within the council’s property portfolio will provide valuable data for risk modellers on building typologies in Auckland, which are expected to be fairly representative of the New Zealand building stock as a whole.
In the period between September 2010 and December 2011, Christchurch was shaken by a series of strong earthquakes including the MW7.1 4 September 2010, Mw 6.2 22 February 2011, MW6.2 13 June 2011 and MW6.0 23 December 2011 earthquakes. These earthquakes produced very strong ground motions throughout the city and surrounding areas that resulted in soil liquefaction and lateral spreading causing substantial damage to buildings, infrastructure and the community. The stopbank network along the Kaiapoi and Avon River suffered extensive damage with repairs projected to take several years to complete. This presented an opportunity to undertake a case-study on a regional scale of the effects of liquefaction on a stopbank system. Ultimately, this information can be used to determine simple performance-based concepts that can be applied in practice to improve the resilience of river protection works. The research presented in this thesis draws from data collected following the 4th September 2010 and 22nd February 2011 earthquakes. The stopbank damage is categorised into seven key deformation modes that were interpreted from aerial photographs, consultant reports, damage photographs and site visits. Each deformation mode provides an assessment of the observed mechanism of failure behind liquefaction-induced stopbank damage and the factors that influence a particular style of deformation. The deformation modes have been used to create a severity classification for the whole stopbank system, being ‘no or low damage’ and ‘major or severe damage’, in order to discriminate the indicators and factors that contribute to ‘major to severe damage’ from the factors that contribute to all levels of damage a number of calculated, land damage, stopbank damage and geomorphological parameters were analysed and compared at 178 locations along the Kaiapoi and Avon River stopbank systems. A critical liquefiable layer was present at every location with relatively consistent geotechnical parameters (cone resistance (qc), soil behaviour type (Ic) and Factor of Safety (FoS)) across the study site. In 95% of the cases the critical layer occurred within two times the Height of the Free Face (HFF,). A statistical analysis of the geotechnical factors relating to the critical layer was undertaken in order to find correlations between specific deformation modes and geotechnical factors. It was found that each individual deformation mode involves a complex interplay of factors that are difficult to represent through correlative analysis. There was, however, sufficient data to derive the key factors that have affected the severity of deformation. It was concluded that stopbank damage is directly related to the presence of liquefaction in the ground materials beneath the stopbanks, but is not critical in determining the type or severity of damage, instead it is merely the triggering mechanism. Once liquefaction is triggered it is the gravity-induced deformation that causes the damage rather than the shaking duration. Lateral spreading and specifically the depositional setting was found to be the key aspect in determining the severity and type of deformation along the stopbank system. The presence or absence of abandoned or old river channels and point bar deposits was found to significantly influence the severity and type of deformation. A review of digital elevation models and old maps along the Kaiapoi River found that all of the ‘major to severe’ damage observed occurred within or directly adjacent to an abandoned river channel. Whilst a review of the geomorphology along the Avon River showed that every location within a point bar deposit suffered some form of damage, due to the depositional environment creating a deposit highly susceptible to liquefaction.
Disasters can create the equivalent of 20 years of waste in only a few days. Disaster waste can have direct impacts on public health and safety, and on the environment. The management of such waste has a great direct cost to society in terms of labor, equipment, processing, transport and disposal. Disaster waste management also has indirect costs, in the sense that slow management can slow down a recovery, greatly affecting the ability of commerce and industry to re-start. In addition, a disaster can lead to the disruption of normal solid waste management systems, or result in inappropriate management that leads to expensive environmental remediation. Finally, there are social impacts implicit in disaster waste management decisions because of psychological impact we expect when waste is not cleared quickly or is cleared too quickly. The paper gives an overview of the challenge of disaster waste management, examining issues of waste quantity and composition; waste treatment; environmental, economic, and social impacts; health and safety matters; and planning. Christchurch, New Zealand, and the broader region of Canterbury were impacted during this research by a series of shallow earthquakes. This has led to the largest natural disaster emergency in New Zealand’s history, and the management of approximately 8 million tons of building and infrastructure debris has become a major issue. The paper provides an overview of the status of disaster waste management in Christchurch as a case study. A key conclusion is the vital role of planning in effective disaster waste management. In spite of the frequency of disasters, in most countries the ratio of time spent on planning for disaster waste management to the time spent on normal waste management is extremely low. Disaster waste management also requires improved education or training of those involved in response efforts. All solid waste professionals have a role to play to respond to the challenges of disaster waste management.
For 150,000 Christchurch school students, the 12.51 pm earthquake of 22 February 2011 shattered their normal lunch time activities and thrust their teachers into the role of emergency first responders. Whether helping students (children) escape immediate danger, or identifying and managing the best strategies for keeping children safe, including provision of extended caregiving when parents were unable to return to school to retrieve their children, teachers had to manage their own fears and trauma reactions in order to appear calm and prevent further distress for the children in their care. Only then did teachers return to their families. Eighteen months later, twenty teachers from across Christchurch, were interviewed. At 12.51pm, the teachers were essentially first responders. Using their usual methods for presenting a calm and professional image, the teachers’ emotion regulation (ER) strategies for managing their immediate fears were similar to those of professional first responders, with similar potential for subsequent burnout and negative emotional effects. Teachers’ higher emotional exhaustion and burnout 18 months later, were associated with school relocation. Lower burnout was associated with more emotional awareness, ER and perceived support. Consistent with international research, teachers’ use of cognitive reappraisal (re-thinking a situation) was an effective ER strategy, but this may not prevent teachers’ emotional resources from eventually becoming depleted. Teachers fulfill an important role in supporting children’s psychosocial adjustment following a natural disaster. However, as also acknowledged in international research, we need to also focus on supporting the teachers themselves.
A view of part of the former Canterbury Public Library complex after the 22 February 2011 earthquake. On the left the 1870s section is visible. It has been red-stickered and the ground around it has been spray painted with the words, "Danger, wall". The building on the right is the former Librarian's House, which was built in 1894. It has been enclosed in a safety fence, and a section of masonry from its gable has collapsed. Containers have been stacked between the buildings to reinforce their walls.
A review of the week's news including: Christchurch's emergency operation moves from rescue to recovery, two minutes' silence observed nationwide, government announces aid package, Finance Minister outlines cost of quake, a fifth of Christchurch population has fled, inquiry launched into collapse of damaged buildings, many Christchurch schools remain closed and some of their pupils enrol elsewhere, students and farmers roll up their sleeves to help quake victims, rescuers tell stories of survival, hundreds of Wellington buildings expected not to meet earthquake safety standards and time capsule discovered under statue of Christchurch founding father
It is the middle of the night and a man wearing his dressing-gown runs out of his house towards a portaloo clutching a toilet roll and saying 'Try me'. The neighbourhood is wrecked by earthquakes. On the ground is a newspaper with a headline that reads 'New Delhi athletes substandard accomodation facilities'. A second newspaper reads 'Given the choice many prefer to stay home'. Context: The first Christchurch earthquake shook the city on early morning of the 4th September 2010. The destruction of sewage infrastructure has meant portaloos and long-drops have become de rigeur as a consequence. There was a desperate rush to get the village ready for the influx of athletes before the opening of the Commonwealth Games on 3rd October 2010 and there was a fear that unsatisfactory sanitation systems might cause health and safety problems. Quantity: 1 digital cartoon(s).
Post-earthquake cordons have been used after seismic events around the world. However, there is limited understanding of cordons and how contextual information of place such as geography, socio-cultural characteristics, economy, institutional and governance structure etc. affect decisions, operational procedures as well as spatial and temporal attributes of cordon establishment. This research aims to fill that gap through a qualitative comparative case study of two cities: Christchurch, New Zealand (Mw 6.2 earthquake, February 2011) and L’Aquila, Italy (Mw 6.3 earthquake, 2009). Both cities suffered comprehensive damage to its city centre and had cordons established for extended period. Data collection was done through purposive and snowball sampling methods whereby 23 key informants were interviewed in total. The interviewee varied in their roles and responsibilities i.e. council members, emergency managers, politicians, business/insurance representatives etc. We found that cordons were established to ensure safety of people and to maintain security of place in both the sites. In both cities, the extended cordon was met with resistance and protests. The extent and duration of establishment of cordon was affected by recovery approach taken in the two cities i.e. in Christchurch demolition was widely done to support recovery allowing for faster removal of cordons where as in L’Aquila, due to its historical importance, the approach to recovery was based on saving all the buildings which extended the duration of cordon. Thus, cordons are affected by site specific needs. It should be removed as soon as practicable which could be made easier with preplanning of cordons.
Following the 2010-2011 Canterbury (New Zealand) earthquake sequence, lightly reinforced wall structures in the Christchurch central business district were observed to form undesirable crack patterns in the plastic hinge region, while yield penetration either side of cracks and into development zones was less than predicted using empirical expressions. To some extent this structural behaviour was unexpected and has therefore demonstrated that there may be less confidence in the seismic performance of conventionally designed reinforced concrete (RC) structures than previously anticipated. This paper provides an observation-based comparison between the behaviour of RC structural components in laboratory testing and the unexpected structural behaviour of some case study buildings in Christchurch that formed concentrated inelastic deformations. The unexpected behaviour and poor overall seismic performance of ‘real’ buildings (compared to the behaviour of laboratory test specimens) was due to the localization of peak inelastic strains, which in some cases has arguably led to: (i) significantly less ductility capacity; (ii) less hysteretic energy dissipation; and (iii) the fracture of the longitudinal reinforcement. These observations have raised concerns about whether lightly reinforced wall structures can satisfy the performance objective of “Life Safety” at the Ultimate Limit State. The significance of these issues and potential consequences has prompted a review of potential problems with the testing conditions and procedures that are commonly used in seismic experimentations on RC structures. This paper attempts to revisit the principles of RC mechanics, in particular, the influence of loading history, concrete tensile strength, and the quantity of longitudinal reinforcement on the performance of real RC structures. Consideration of these issues in future research on the seismic performance of RC might improve the current confidence levels in newly designed conventional RC structures.
During many years the analysis of some geophysical results of Charles Darwin was being carried out in Department. Darwin has connected almost 200 years ago results of catastrophic earthquakes with vertical movement of a surface of the Earth. Usually this movement less horizontal movement and its influence on destruction of cities is not considered. Earthquake hazard assessment studies were focused usually on the horizontal ground motion. Effects of the strong vertical motion were not, practically, discussed. The margins of safety against gravity-induced static vertical forces in constructed buildings usually provide adequate resistance to dynamic forces induced by the vertical acceleration during an earthquake. However, the earthquake in Christchurch is an example of the vertical seismic shock . The earthquake magnitude was rather small - nearby 6.3. However, the result was catastrophic. The same took place in 1835. It allowed to Darwin to formulate a few great ideas. Charles Darwin has explained qualitatively results of an interaction of huge seismic waves with volcanoes and the nature of volcanism and seismicity of our planet. These important data of Charles Darwin became very actual recently. It is possible to tell also the same about tsunami and extreme ocean waves described by Charles Darwin. Therefore this data were analyzed using modern mechanics, mathematics and physics in Department. In particular, the theory of catastrophic waves was developed based on Darwin's data. The theory tried to explain occurrence, evolution and distribution the catastrophic waves in various natural systems, since atoms, oceans, surfaces of the Earth and up to the very early Universe. Some results of the research were published in prestigious magazines. Later they were presented in two books devoted to Charles Darwin's anniversary (2009). Last from them was published in Russian (2011). We give here key ideas of this research which is a part of interdisciplinary researches of Department. Some ideas are discussed. Not less important purpose is very short historical review of some researches of Darwin. In particular, we underline Darwin' priority in the formulation of the bases of Dynamics Earth.
High demolition rates were observed in New Zealand after the 2010-2011 Canterbury Earthquake Sequence despite the success of modern seismic design standards to achieve required performance objectives such as life safety and collapse prevention. Approximately 60% of the multi-storey reinforced concrete (RC) buildings in the Christchurch Central Business District were demolished after these earthquakes, even when only minor structural damage was present. Several factors influenced the decision of demolition instead of repair, one of them being the uncertainty of the seismic capacity of a damaged structure. To provide more insight into this topic, the investigation conducted in this thesis evaluated the residual capacity of moderately damaged RC walls and the effectiveness of repair techniques to restore the seismic performance of heavily damaged RC walls. The research outcome provided insights for developing guidelines for post-earthquake assessment of earthquake-damaged RC structures. The methodology used to conduct the investigation was through an experimental program divided into two phases. During the first phase, two walls were subjected to different types of pre-cyclic loading to represent the damaged condition from a prior earthquake, and a third wall represented a repair scenario with the damaged wall being repaired using epoxy injection and repair mortar after the pre-cyclic loading. Comparisons of these test walls to a control undamaged wall identified significant reductions in the stiffness of the damaged walls and a partial recovery in the wall stiffness achieved following epoxy injection. Visual damage that included distributed horizontal and diagonal cracks and spalling of the cover concrete did not affect the residual strength or displacement capacity of the walls. However, evidence of buckling of the longitudinal reinforcement during the pre-cyclic loading resulted in a slight reduction in strength recovery and a significant reduction in the displacement capacity of the damaged walls. Additional experimental programs from the literature were used to provide recommendations for modelling the response of moderately damaged RC walls and to identify a threshold that represented a potential reduction in the residual strength and displacement capacity of damaged RC walls in future earthquakes. The second phase of the experimental program conducted in this thesis addressed the replacement of concrete and reinforcing steel as repair techniques for heavily damaged RC walls. Two walls were repaired by replacing the damaged concrete and using welded connections to connect new reinforcing bars with existing bars. Different locations of the welded connections were investigated in the repaired walls to study the impact of these discontinuities at the critical section. No significant changes were observed in the stiffness, strength, and displacement capacity of the repaired walls compared to the benchmark undamaged wall. Differences in the local behaviour at the critical section were observed in one of the walls but did not impact the global response. The results of these two repaired walls were combined with other experimental programs found in the literature to assemble a database of repaired RC walls. Qualitative and quantitative analyses identified trends across various parameters, including wall types, damage before repair, and repair techniques implemented. The primary outcome of the database analysis was recommendations for concrete and reinforcing steel replacement to restore the strength and displacement capacity of heavily damaged RC walls.
New Zealand has a long tradition of using light timber frame for construction of its domestic dwellings. After the most recent earthquakes (e.g. Canterbury earthquakes sequence), wooden residential houses showed satisfactory life safety performance. However, poor performance was reported in terms of their seismic resilience. Although numerous innovative methods to mitigate damage have been introduced to the New Zealand community in order to improve wooden house performance, these retrofit options have not been readily taken up. The low number of retrofitted wooden-framed houses leads to questions about whether homeowners are aware of the necessity of seismic retrofitting their houses to achieve a satisfactory seismic performance. This study aims to explore different retrofit technologies that can be applied to wooden-framed houses in Wellington, taking into account the need of homeowners to understand the risk, likelihood and extent of damage expected after an event. A survey will be conducted in Wellington about perceptions of homeowners towards the expected performance of their wooden-framed houses. The survey questions were designed to gain an understanding of homeowners' levels of safety and awareness of possible damage after a seismic event. Afterwards, a structural review of a sample of the houses will be undertaken to identify common features and detail potential seismic concerns. The findings will break down barriers to making improvements in the performance of wooden-framed houses and lead to enhancements in the confidence of homeowners in the event of future seismic activity. This will result in increased understanding and contribute towards an accessible knowledge base, which will possibly increase significantly the use of these technologies and avoid unnecessary economic and social costs after a seismic event.
Test results are presented for wall-diaphragm plate anchor connections that were axially loaded to rupture. These connection samples were extracted post-earthquake by sorting through the demolition debris from unreinforced masonry (URM) buildings damaged in the Christchurch earthquakes. Unfortunately the number of samples available for testing was small due to the difficulties associated with sample collection in an environment of continuing aftershocks and extensive demolition activity, when personal safety combined with commercial activity involving large demolition machinery were imperatives that inhibited more extensive sample collection for research purposes. Nevertheless, the presented data is expected to be of assistance to structural engineers undertaking seismic assessment of URM buildings that have existing wall-diaphragm anchor plate connections installed, where it may be necessary to estimate the capacity of the existing connection as an important parameter linked with determining the current seismic capacity of the building and therefore influencing the decision regarding whether supplementary connections should be installed.
Tsunami events including the 2004 Indian Ocean Tsunami and the 2011 Tohoku Earthquake and Tsunami confirmed the need for Pacific-wide comprehensive risk mitigation and effective tsunami evacuation planning. New Zealand is highly exposed to tsunamis and continues to invest in tsunami risk awareness, readiness and response across the emergency management and science sectors. Evacuation is a vital risk reduction strategy for preventing tsunami casualties. Understanding how people respond to warnings and natural cues is an important element to improving evacuation modelling techniques. The relative rarity of tsunami events locally in Canterbury and also globally, means there is limited knowledge on tsunami evacuation behaviour, and tsunami evacuation planning has been largely informed by hurricane evacuations. This research aims to address this gap by analysing evacuation behaviour and movements of Kaikōura and Southshore/New Brighton (coastal suburb of Christchurch) residents following the 2016 Kaikōura earthquake. Stage 1 of the research is engaging with both these communities and relevant hazard management agencies, using a survey and community workshops to understand real-event evacuation behaviour during the 2016 Kaikōura earthquake and subsequent tsunami evacuations. The second stage is using the findings from stage 1 to inform an agent-based tsunami evacuation model, which is an approach that simulates of the movement of people during an evacuation response. This method improves on other evacuation modelling approaches to estimate evacuation times due to better representation of local population characteristics. The information provided by the communities will inform rules and interactions such as traffic congestion, evacuation delay times and routes taken to develop realistic tsunami evacuation models. This will allow emergency managers to more effectively prepare communities for future tsunami events, and will highlight recommended actions to increase the safety and efficiency of future tsunami evacuations.
The use of post-earthquake cordons as a tool to support emergency managers after an event has been documented around the world. However, there is limited research that attempts to understand the use, effectiveness, inherent complexities, impacts and subsequent consequences of cordoning once applied. This research aims to fill that gap by providing a detailed understanding of first, the cordons and associated processes, and their implications in a post-earthquake scenario. We use a qualitative method to understand cordons through case studies of two cities where it was used in different temporal and spatial scales: Christchurch (2011) and Wellington (Kaikōura earthquake 2016), New Zealand. Data was collected through 21 expert interviews obtained through purposive and snowball sampling of key informants who were directly or indirectly involved in a decision-making role and/or had influence in relation to the cordoning process. The participants were from varying backgrounds and roles i.e. emergency managers, council members, business representatives, insurance representatives, police and communication managers. The data was transcribed, coded in Nvivo and then grouped based on underlying themes and concepts and then analyzed inductively. It is found that cordons are used primarily as a tool to control access for the purpose of life safety and security. But cordons can also be adapted to support recovery. Broadly, it can be synthesized and viewed based on two key aspects, ‘decision-making’ and ‘operations and management’, which overlap and interact as part of a complex system. The underlying complexity arises in large part due to the multitude of sectors it transcends such as housing, socio-cultural requirements, economics, law, governance, insurance, evacuation, available resources etc. The complexity further increases as the duration of cordon is extended.
Depending on their nature and severity, disasters can create large volumes of debris and waste. Waste volumes from a single event can be the equivalent of many times the annual waste generation rate of the affected community. These volumes can overwhelm existing solid waste management facilities and personnel. Mismanagement of disaster waste can affect both the response and long term recovery of a disaster affected area. Previous research into disaster waste management has been either context specific or event specific, making it difficult to transfer lessons from one disaster event to another. The aim of this research is to develop a systems understanding of disaster waste management and in turn develop context- and disaster-transferrable decision-making guidance for emergency and waste managers. To research this complex and multi-disciplinary problem, a multi-hazard, multi-context, multi-case study approach was adopted. The research focussed on five major disaster events: 2011 Christchurch earthquake, 2009 Victorian Bushfires, 2009 Samoan tsunami, 2009 L’Aquila earthquake and 2005 Hurricane Katrina. The first stage of the analysis involved the development of a set of ‘disaster & disaster waste’ impact indicators. The indicators demonstrate a method by which disaster managers, planners and researchers can simplify the very large spectra of possible disaster impacts, into some key decision-drivers which will likely influence post-disaster management requirements. The second stage of the research was to develop a set of criteria to represent the desirable environmental, economic, social and recovery effects of a successful disaster waste management system. These criteria were used to assess the effectiveness of the disaster waste management approaches for the case studies. The third stage of the research was the cross-case analysis. Six main elements of disaster waste management systems were identified and analysed. These were: strategic management, funding mechanisms, operational management, environmental and human health risk management, and legislation and regulation. Within each of these system elements, key decision-making guidance (linked to the ‘disaster & disaster waste’ indicators) and management principles were developed. The ‘disaster & disaster waste’ impact indicators, the effects assessment criteria and management principles have all been developed so that they can be practically applied to disaster waste management planning and response in the future.
The Manchester Courts building was a heritage building located in central Christchurch (New Zealand) that was damaged in the Mw 7.1 Darfield earthquake on 4 September 2010 and subsequently demolished as a risk reduction exercise. Because the building was heritage listed, the decision to demolish the building resulted in strong objections from heritage supporters who were of the opinion that the building had sufficient residual strength to survive possible aftershock earthquakes. On 22 February 2011 Christchurch was struck by a severe aftershock, leading to the question of whether building demolition had proven to be the correct risk reduction strategy. Finite element analysis was used to undertake a performance-based assessment, validating the accuracy of the model using the damage observed in the building before its collapse. In addition, soil-structure interaction was introduced into the research due to the comparatively low shear wave velocity of the soil. The demolition of a landmark heritage building was a tragedy that Christchurch will never recover from, but the decision was made considering safety, societal, economic and psychological aspects in order to protect the city and its citizens. The analytical results suggest that the Manchester Courts building would have collapsed during the 2011 Christchurch earthquake, and that the collapse of the building would have resulted in significant fatalities.
Base isolation is an incredibly effective technology used in seismic regions throughout the world to limit structural damage and maintain building function, even after severe earthquakes. However, it has so far been underutilised in light-frame wood construction due to perceived cost issues and technical problems, such as a susceptibility to movement under strong wind loads. Light-frame wood buildings make up the majority of residential construction in New Zealand and sustained significant damage during the 2010-2011 Canterbury earthquake sequence, yet the design philosophy has remained largely unchanged for years due to proven life-safety performance. Recently however, with the advent of performance based earthquake engineering, there has been a renewed focus on performance factors such as monetary loss that has driven a want for higher performing residential buildings. This research develops a low-cost approach for the base isolation of light-frame wood buildings using a flat-sliding friction base isolation system, which addresses the perceived cost and technical issues, and verifies the seismic performance through physical testing on the shake table at the University of Canterbury. Results demonstrate excellent seismic performance with no structural damage reported despite a large number of high-intensity earthquake simulations. Numerical models are subsequently developed and calibrated to New Zealand light-frame wood building construction approaches using state-of-the-art wood modelling software, Timber3D. The model is used to accurately predict both superstructure drift and acceleration demand parameters of fixed-base testing undertaken after the base isolation testing programme is completed. The model development allows detailed cost analyses to be undertaken within the performance based earthquake engineering framework that highlights the monetary benefits of using base isolation. Cost assessments indicate the base isolation system is only 6.4% more compared to the traditional fixed-base system. Finally, a design procedure is recommended for base isolated light-frame wood buildings that is founded on the displacement based design (DBD) approach used in the United States and New Zealand. Nonlinear analyses are used to verify the DBD method which indicate its suitability.
A yellow sticker on the door of a house in Worcester Street reading, "Restricted use. No entry except on essential business. Warning: This building has been damaged and its structural safety is questionable. Earthquake aftershocks present danger. Enter only at own risk. Subsequent events may result in increased damage and danger, changing this assessment. Reinspection may be required. The damage is as described below: partial collapse of longitudinal walls". Following on from this are the specific conditions that must be complied with to enable entry into the property, the inspector's identification details, and the date and time the building was inspected. At the bottom the form reads, "Do not remove this placard. Placed by order of the territorial authority Christchurch City Council".
The Catholic Cathedral of the Blessed Sacrament is a category 1 listed heritage building constructed largely of unreinforced stone masonry, and was significantly damaged in the recent Canterbury earthquakes. The building experienced ground shaking in excess of its capacity leading to block failures and partial collapse of parts of the building, which left the building standing but still posing a significant hazard. In this paper we discuss the approach to securing the building, and the interaction of the structural, heritage and safety demands involved in a dynamic seismic risk environment. We briefly cover the types of failures observed and the behaviour of the structure, and investigate the performance of both strengthened and un-strengthened parts of the building. Seismic strengthening options are investigated at a conceptual level. We draw conclusions as to how the building performed in the earthquakes, comment on the effectiveness of the strengthening and securing work and discuss the potential seismic strengthening methods.
In September 2010 and February 2011 the Canterbury region of New Zealand was struck by two powerful earthquakes, registering magnitude 7.1 and 6.3 respectively on the Richter scale. The second earthquake was centred 10 kilometres south-east of the centre of Christchurch (the region’s capital and New Zealand’s third most populous urban area, with approximately 360,000 residents) at a depth of five kilometres. 185 people were killed, making it the second deadliest natural disaster in New Zealand’s history. (66 people were killed in the collapse of one building alone, the six-storey Canterbury Television building.) The earthquake occurred during the lunch hour, increasing the number of people killed on footpaths and in buses and cars by falling debris. In addition to the loss of life, the earthquake caused catastrophic damage to both land and buildings in Christchurch, particularly in the central business district. Many commercial and residential buildings collapsed in the tremors; others were damaged through soil liquefaction and surface flooding. Over 1,000 buildings in the central business district were eventually demolished because of safety concerns, and an estimated 70,000 people had to leave the city after the earthquakes because their homes were uninhabitable. The New Zealand Government declared a state of national emergency, which stayed in force for ten weeks. In 2014 the Government estimated that the rebuild process would cost NZ$40 billion (approximately US$27.3 billion, a cost equivalent to 17% of New Zealand’s annual GDP). Economists now estimate it could take the New Zealand economy between 50 and 100 years to recover. The earthquakes generated tens of thousands of insurance claims, both against private home insurance companies and against the New Zealand Earthquake Commission, a government-owned statutory body which provides primary natural disaster insurance to residential property owners in New Zealand. These ranged from claims for hundreds of millions of dollars concerning the local port and university to much smaller claims in respect of the thousands of residential homes damaged. Many of these insurance claims resulted in civil proceedings, caused by disputes about policy cover, the extent of the damage and the cost and/or methodology of repairs, as well as failures in communication and delays caused by the overwhelming number of claims. Disputes were complicated by the fact that the Earthquake Commission provides primary insurance cover up to a monetary cap, with any additional costs to be met by the property owner’s private insurer. Litigation funders and non-lawyer claims advocates who took a percentage of any insurance proceeds also soon became involved. These two factors increased the number of parties involved in any given claim and introduced further obstacles to resolution. Resolving these disputes both efficiently and fairly was (and remains) central to the rebuild process. This created an unprecedented challenge for the justice system in Christchurch (and New Zealand), exacerbated by the fact that the Christchurch High Court building was itself damaged in the earthquakes, with the Court having to relocate to temporary premises. (The High Court hears civil claims exceeding NZ$200,000 in value (approximately US$140,000) or those involving particularly complex issues. Most of the claims fell into this category.) This paper will examine the response of the Christchurch High Court to this extraordinary situation as a case study in innovative judging practices and from a jurisprudential perspective. In 2011, following the earthquakes, the High Court made a commitment that earthquake-related civil claims would be dealt with as swiftly as the Court's resources permitted. In May 2012, it commenced a special “Earthquake List” to manage these cases. The list (which is ongoing) seeks to streamline the trial process, resolve quickly claims with precedent value or involving acute personal hardship or large numbers of people, facilitate settlement and generally work proactively and innovatively with local lawyers, technical experts and other stakeholders. For example, the Court maintains a public list (in spreadsheet format, available online) with details of all active cases before the Court, listing the parties and their lawyers, summarising the facts and identifying the legal issues raised. It identifies cases in which issues of general importance have been or will be decided, with the expressed purpose being to assist earthquake litigants and those contemplating litigation and to facilitate communication among parties and lawyers. This paper will posit the Earthquake List as an attempt to implement innovative judging techniques to provide efficient yet just legal processes, and which can be examined from a variety of jurisprudential perspectives. One of these is as a case study in the well-established debate about the dialogic relationship between public decisions and private settlement in the rule of law. Drawing on the work of scholars such as Hazel Genn, Owen Fiss, David Luban, Carrie Menkel-Meadow and Judith Resnik, it will explore the tension between the need to develop the law through the doctrine of precedent and the need to resolve civil disputes fairly, affordably and expeditiously. It will also be informed by the presenter’s personal experience of the interplay between reported decisions and private settlement in post-earthquake Christchurch through her work mediating insurance disputes. From a methodological perspective, this research project itself gives rise to issues suitable for discussion at the Law and Society Annual Meeting. These include the challenges in empirical study of judges, working with data collected by the courts and statistical analysis of the legal process in reference to settlement. September 2015 marked the five-year anniversary of the first Christchurch earthquake. There remains widespread dissatisfaction amongst Christchurch residents with the ongoing delays in resolving claims, particularly insurers, and the rebuild process. There will continue to be challenges in Christchurch for years to come, both from as-yet unresolved claims but also because of the possibility of a new wave of claims arising from poor quality repairs. Thus, a final purpose of presenting this paper at the 2016 Meeting is to gain the benefit of other scholarly perspectives and experiences of innovative judging best practice, with a view to strengthening and improving the judicial processes in Christchurch. This Annual Meeting of the Law and Society Association in New Orleans is a particularly appropriate forum for this paper, given the recent ten year anniversary of Hurricane Katrina and the plenary session theme of “Natural and Unnatural Disasters – human crises and law’s response.” The presenter has a personal connection with this theme, as she was a Fulbright scholar from New Zealand at New York University in 2005/2006 and participated in the student volunteer cleanup effort in New Orleans following Katrina. http://www.lawandsociety.org/NewOrleans2016/docs/2016_Program.pdf