Search

found 701 results

Images, Alexander Turnbull Library

The South Island is depicted as a punch bag which is reeling with the punishment inflicted after having been practised on by 'blizzards', 'earthquakes', 'disasters' and now 'drought'. Context; the Christchurch earthquake of 4 October and the Pike River Mine disaster of 19 November as well as some fairly extreme weather. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Shows Christchurch's Anglican cathedral receiving extensive treatment including blood, ambulances, scaffold and signs reading 'save!' In the background Christchurch's Catholic Cathedral says it wants its share of attention as well. Context: The focus of repairing the Christchurch Anglican cathedral appeared to draw focus and resources from the equally historic and damaged Catholic Cathedral. Quantity: 1 digital cartoon(s).

Images, eqnz.chch.2010

20171103_5582_1D3-38 Trees in the Red Zone (307/365) In what used to be sections with houses and yards. Between late 2011 and 2014 the houses (well 95% of them) were removed due to land dropping in the 2011 earthquakes and the proximity of the Avon River, tidal in this area. #8859

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence (CES) of 2010-2011 produced large seismic moments up to Mw 7.1. These large, near-to-surface (<15 km) ruptures triggered >6,000 rockfall boulders on the Port Hills of Christchurch, many of which impacted houses and affected the livelihoods of people within the impacted area. From these disastrous and unpredicted natural events a need arose to be able to assess the areas affected by rockfall events in the future, where it is known that a rockfall is possible from a specific source outcrop but the potential boulder runout and dynamics are not understood. The distribution of rockfall deposits is largely constrained by the physical properties and processes of the boulder and its motion such as block density, shape and size, block velocity, bounce height, impact and rebound angle, as well as the properties of the substrate. Numerical rockfall models go some way to accounting for all the complex factors in an algorithm, commonly parameterised in a user interface where site-specific effects can be calibrated. Calibration of these algorithms requires thorough field checks and often experimental practises. The purpose of this project, which began immediately following the most destructive rupture of the CES (February 22, 2011), is to collate data to characterise boulder falls, and to use this information, supplemented by a set of anthropogenic boulder fall data, to perform an in-depth calibration of the three-dimensional numerical rockfall model RAMMS::Rockfall. The thesis covers the following topics: • Use of field data to calibrate RAMMS. Boulder impact trails in the loess-colluvium soils at Rapaki Bay have been used to estimate ranges of boulder velocities and bounce heights. RAMMS results replicate field data closely; it is concluded that the model is appropriate for analysing the earthquake-triggered boulder trails at Rapaki Bay, and that it can be usefully applied to rockfall trajectory and hazard assessment at this and similar sites elsewhere. • Detailed analysis of dynamic rockfall processes, interpreted from recorded boulder rolling experiments, and compared to RAMMS simulated results at the same site. Recorded rotational and translational velocities of a particular boulder show that the boulder behaves logically and dynamically on impact with different substrate types. Simulations show that seasonal changes in soil moisture alter rockfall dynamics and runout predictions within RAMMS, and adjustments are made to the calibration to reflect this; suggesting that in hazard analysis a rockfall model should be calibrated to dry rather than wet soil conditions to anticipate the most serious outcome. • Verifying the model calibration for a separate site on the Port Hills. The results of the RAMMS simulations show the effectiveness of calibration against a real data set, as well as the effectiveness of vegetation as a rockfall barrier/retardant. The results of simulations are compared using hazard maps, where the maximum runouts match well the mapped CES fallen boulder maximum runouts. The results of the simulations in terms of frequency distribution of deposit locations on the slope are also compared with those of the CES data, using the shadow angle tool to apportion slope zones. These results also replicate real field data well. Results show that a maximum runout envelope can be mapped, as well as frequency distribution of deposited boulders for hazard (and thus risk) analysis purposes. The accuracy of the rockfall runout envelope and frequency distribution can be improved by comprehensive vegetation and substrate mapping. The topics above define the scope of the project, limiting the focus to rockfall processes on the Port Hills, and implications for model calibration for the wider scientific community. The results provide a useful rockfall analysis methodology with a defensible and replicable calibration process, that has the potential to be applied to other lithologies and substrates. Its applications include a method of analysis for the selection and positioning of rockfall countermeasure design; site safety assessment for scaling and demolition works; and risk analysis and land planning for future construction in Christchurch.

Audio, Radio New Zealand

Instead of concentrating on the buildings destroyed in and after the earthquakes in Christchurch's CBD, a new event is enticing people back to explore the heritage buildings that have survived. A new organisation, Te Putahi, is behind the Open Christchurch programme that celebrates the city's surviving architecture, starting with inner-city schools throwing open their doors to the public. Architectural historian and co-founder of Te Putahi, Dr Jessica Halliday tells Lynn Freeman they hope to encourage discussion around well-designed spaces and their impacts on peoples' lives. Open Christchurch starts next Sunday with a tour of The Cathedral Grammar Junior School.

Articles, UC QuakeStudies

This report was the first report in the district series, and has a different format to later reports. It includes all natural hazards, not only earthquake hazards. It describes earthquake, flooding, meteorological, landslide and coastal hazards within Hurunui district and gives details of historic events. It includes district-scale (1:250,000) active fault and flood hazard maps. The report describes an earthquake scenario for a magnitude 6.9 earthquake near Cheviot, as well as flooding, meteorological, landslide, coastal erosion, storm surge, and tsunami scenarios.

Articles, UC QuakeStudies

This report was the first report in the district series, and has a different format to later reports. It includes all natural hazards, not only earthquake hazards. It describes earthquake, flooding, meteorological, landslide and coastal hazards within Hurunui district and gives details of historic events. It includes district-scale (1:250,000) active fault and flood hazard maps. The report describes an earthquake scenario for a magnitude 6.9 earthquake near Cheviot, as well as flooding, meteorological, landslide, coastal erosion, storm surge, and tsunami scenarios. See Object Overview for background and usage information.

Articles, UC QuakeStudies

A PDF copy of four hoarding designs for Christchurch Hospital. The images read, "Noticed anything awesome lately? Heads up... a helipad is coming!", "Good things are happening here. A new Emergency Department is on its way", "Moving your body can move your mood. Making you strong inside and out - just like our new buildings!" and "What could you do to recharge? Connecting with others can be a real pick-me-up whether you're at work or enjoying a well-earned catch up".

Images, UC QuakeStudies

A stack of wooden frames with the words "Quake makes world headlines" written on the uppermost frame. The photographer comments, "This is a sculpture at the CPIT facility in Christchurch. It is a series of squares placed over a column with writing on the squares. It is an excellent movable sculpture that conveys the Christchurch earthquake very well. The squares are placed so that they can slide over each other and even fall inside the other on one side. It is a pity that only two sides of the squares are written on".

Images, UC QuakeStudies

A photograph of an earthquake-damaged house on Marine Parade in North Brighton. The front section of the house has collapsed, the rest buckled. The wall of the gable has also collapsed as well as part of the lower front wall. A red sticker in the window indicates that the building is unsafe to enter. A message has been spray painted on the front window, reading, "Roof tiles, $3 each". Police tape, a road cone and saw horses have been used to cordon off the house.

Images, UC QuakeStudies

An earthquake-damaged bridge, the approach to which has slumped. The photographer comments, "Due to lateral spread and the land slumping the road leading to this bridge has moved down greatly. Just imagine making the street lamps upright and how much that section of road would rise up at the end. When you go over bridges in the east side of Christchurch it is quite a climb up and a big drop down on the other side. The bridges in most cases coped very well, but not so the land leading to them".

Images, eqnz.chch.2010

There are occasional sewerage spills into the Avon River while all the sewer and road repairs are carried out. This rock wall was level and well above high tide level prior to the eathquakes. All the houses that can been seen here (except for those on the distant Port Hills) are in the suburban "red zone" and are still to be demolished.

Images, eqnz.chch.2010

Today (04/09/14) marks the fourth anniversary since the first earthquake rocked the city and greater Christchurch area. That first quake was magnitude 7.1, and luckily there was only one fatality (possible a heart attack). Since then we have had over 14,000 quakes, most very small in magnitude, but well over 500 of magnitude 4 or greater. 5...

Research papers, University of Canterbury Library

A 3D high-resolution model of the geologic structure and associated seismic velocities in the Canterbury, New Zealand region is developed utilising data from depthconverted seismic reflection lines, petroleum and water well logs, cone penetration tests, and implicitly guided by existing contour maps and geologic cross sections in data sparse subregions. The model, developed using geostatistical Kriging, explicitly represents the significant and regionally recognisable geologic surfaces that mark the boundaries between geologic units with distinct lithology and age. The model is examined in the form of both geologic surface elevation contour maps as well as vertical cross sections of shear wave velocity, with the most prominent features being the Banks Peninsula Miocene-Pliocene volcanic edifice, and the Pegasus and Rakaia late Mesozoic-Neogene sedimentary basins. The adequacy of the modelled geologic surfaces is assessed through a residual analysis of point constraints used in the Kriging and qualitative comparisons with previous geologic models of subsets of the region. Seismic velocities for the lithological units between the geologic surfaces have also been derived, thus providing the necessary information for a Canterbury velocity model (CantVM) for use in physics-based seismic wave propagation. The developed model also has application for the determination of depths to specified shear wave velocities for use in empirical ground motion modelling, which is explicitly discussed via an example.

Research papers, University of Canterbury Library

This paper presents a seismic velocity model of Canterbury, New Zealand based on 3D geologic surfaces and velocities from a range of data sources. The model provides the 3D crustal structure in the region at multiple length scales for seismic wave propagation simulations, such as broadband ground motion and shallow site response analyses related to understanding the ground motions and site responses during the 2010- 2011 Canterbury earthquakes. Pre-Quaternary geologic horizons are calculated based on the reinterpretation of a comprehensive network of seismic reflection surveys from seven different campaigns over the past 50 years, as well as point constraints across an array of petroleum industry drill holes. Particular attention is given to a detailed representation of Quaternary stratigraphy, representing shallow (z<250m) near-surface layers in the model. Seismic velocities are obtained from seismic reflection processing (for Vp) and also recently performed active and passive surface wave analyses (for Vs). Over 1,700 water wells in the region are used to constrain the complex inter-bedded Quaternary stratigraphy (gravels, sands, silts, organics etc.) near the coastline, including beneath urban Christchurch, which has resulted from fluvial deposition and marine regression and transgression. For the near-surface Springston and Christchurch Formations in the Christchurch urban area (z<50m), high-spatial resolution seismic velocities (including Vs30 ) were obtained from over 13,000 cone penetration tests combined with a recently developed CPT-Vs correlation.

Research papers, University of Canterbury Library

The need for a simple but rigorous seismic assessment procedure to predict damage to reinforced concrete buildings during a seismic event has been highlighted following the Canterbury Earthquake sequence. Such simplified assessment procedure, applied to individual structure or large building inventory, should not only have low requirement in terms of input information and involve straightforward analyses, but also should be capable to provide reliable predictive results within short timeframe. This research provides a general overview and critical comparison of alternative simplified assessment procedures adopted in NZSEE 2006 Guidelines (Assessment and Improvement of the Structural Performance of Buildings in Earthquakes), ASCE 41-13 (Seismic Evaluation and Retrofit of Existing Buildings), and EN: 1998-3: 2005 (Assessment and Retrofitting of Buildings). Particular focus is given to the evaluation of the capability of Simplified Lateral Mechanism Analysis (SLaMa), which is an analytical pushover method adopted in NZSEE 2006 Guidelines. The predictive results from SLaMa are compared to damages observed for a set of reinforced concrete buildings in Christchurch, as well as the results from more detailed assessment procedure based on numerical modelling. This research also suggests improvements to SLaMa, together with validation of the improvements, to include assessment of local mechanism by strength hierarchy evaluation, as well as to develop assessment of global mechanism including post-yield mechanism sequence based on local mechanism.

Audio, Radio New Zealand

TVs, shopping trolleys, beds, mattresses, even a gun. That is just some of the rubbish found by residents surrounding Christchurch's residential red zone. The area used to be filled with houses, but damage after the Canterbury earthquakes forced thousands of homes to be demolished. While many of the old suburban roads remain, the area now resembles a park. But it is now attracting those wanting to dump their rubbish for free - and Land Information NZ, which controls the land, has removed 25 tonnes of trash since January. Residents have had enough as well - with some taking matters into their own hands. Checkpoint reporter Logan Church has the story.

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Teeing off: Storeman Wayne Smith at the 12th hole of the Contact Wairakei Charity Golf Tournament for the Canterbury Earthquake Relief Fund. Held earlier this month, the tournament raised more than $8000 for the Canterbury Earthquake Relief Fund. In total more than $30,000 was raised for three charities at this year's annual tournament held at the Taupo Golf Club. As well as the $8200 raised for the Canterbury Earthquake Recovery Fund, two local charities Taupo Big Brother Big Sister and the Taupo Therapy Centre, each received $11,000 each from this year's fundraising effort".

Images, UC QuakeStudies

A view down Manchester Street, looking south. The road is noticably buckled, and rubble from damaged buildings can be seen beyond the cordon fence. The photographer comments, "Today I ... went for a walk along the cordon to the north of Christchurch CBD which runs about one street back from Bealey Avenue. The soldiers manning the cordon seemed happy for me to take photos but I couldn't see much of the city from the barrier ... what you can see shows there's obviously a lot of damage. The roads are swollen and raised in many place. The once flat CBD will now feature plenty of hills as well as natural traffic calming features".

Images, UC QuakeStudies

The entrance to KB02, the University of Canterbury's Digital Media Group temporary office in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. The front doors. We'll need to advertise our presence once we're settled in".

Research papers, The University of Auckland Library

The performance of retrofitted unreinforced masonry (URM) bearing wall buildings in Christchurch is examined, considering ground motion recordings from multiple events. Suggestions for how the experiences in Christchurch might be relevant to retrofit practices common to New Zealand, U.S. and Canada are also provided. Whilst the poor performance of unretrofitted URM buildings in earthquakes is well known, much less is known about how retrofitted URM buildings perform when subjected to strong ground shaking.

Audio, Radio New Zealand

Gulls are well known for swooping in and flogging food off your plate or picnic and now they are making a complete menace of themselves in Christchurch's New Regent street. Local businesses are being over-run by the red and black-billed gulls that are nesting on the rooves of buildings along the street, swooping and pooping all over the place. It's not the first time they've invaded, they started breeding in 2019 in an earthquake damaged building on the corner of Armagh and New Regent streets. The problem is both the red and black-billed gulls are protected. Casey Alderson from Belle Cafe spoke to Lisa Owen.

Research papers, University of Canterbury Library

Introduction This poster presents the inferred initial performance and recovery of the water supply network of Christchurch following the 22 February 2011 Mw 6.2 earthquake. Results are presented in a geospatial and temporal fashion. This work strengthens the current understanding of the restoration of such a system after a disaster and quantifies the losses caused by this earthquake in respect with the Christchurch community. Figure 1 presents the topology of the water supply network as well as the spatial distribution of the buildings and their use.

Research Papers, Lincoln University

Increasingly, economic, political and human crises, along with natural disasters, constitute a recurrent reality around the world. The effect of large-scale disaster and economic disruption are being felt far and wide and impacting libraries in diverse ways. Libraries are casualties of natural disasters, from earthquakes to hurricanes, as well as civil unrest and wars. Sudden cuts in library budgets have resulted in severe staff reductions, privatization and even closures. The presenters share their experiences about how they have prepared for or coped with profound change.

Images, eqnz.chch.2010

20130211_2645_1D3-840 South New Brighton bridge damage (under repair) Earthquake damage (that right hand abutment should be vertical with the bridge and the hand rail level). Bridge is closed to eastbound traffic (to left) and has a 3500kg weight limit as well. The eastern approach is the same. Damage caused mainly in the 04/09/10 and 22/02/11...

Research papers, University of Canterbury Library

One of the most controversial issues highlighted by the 2010-2011 Christchurch earthquake series and more recently the 2016 Kaikoura earthquake, has been the evident difficulty and lack of knowledge and guidelines for: a) evaluation of the residual capacity damaged buildings to sustain future aftershocks; b) selection and implementation of a series of reliable repairing techniques to bring back the structure to a condition substantially the same as prior to the earthquake; and c) predicting the cost (or cost-effectiveness) of such repair intervention, when compared to fully replacement costs while accounting for potential aftershocks in the near future. As a result of such complexity and uncertainty (i.e., risk), in combination with the possibility (unique in New Zealand when compared to most of the seismic-prone countries) to rely on financial support from the insurance companies, many modern buildings, in a number exceeding typical expectations from past experiences at an international level, have ended up being demolished. This has resulted in additional time and indirect losses prior to the full reconstruction, as well as in an increase in uncertainty on the actual relocation of the investment. This research project provides the main end-users and stakeholders (practitioner engineers, owners, local and government authorities, insurers, and regulatory agencies) with comprehensive evidence-based information to assess the residual capacity of damage reinforced concrete buildings, and to evaluate the feasibility of repairing techniques, in order to support their delicate decision-making process of repair vs. demolition or replacement. Literature review on effectiveness of epoxy injection repairs, as well as experimental tests on full-scale beam-column joints shows that repaired specimens have a reduced initial stiffness compared with the undamaged specimen, with no apparent strength reduction, sometimes exhibiting higher displacement ductility capacities. Although the bond between the steel and concrete is only partially restored, it still allows the repaired specimen to dissipate at least the same amount of hysteretic energy. Experimental tests on buildings subjected to earthquake loading demonstrate that even for severe damage levels, the ability of the epoxy injection to restore the initial stiffness of the structure is significant. Literature review on damage assessment and repair guidelines suggests that there is consensus within the international community that concrete elements with cracks less than 0.2 mm wide only require cosmetic repairs; epoxy injection repairs of cracks less and 2.0 mm wide and concrete patching of spalled cover concrete (i.e., minor to moderate damage) is an appropiate repair strategy; and for severe damaged components (e.g., cracks greater than 2.0 mm wide, crushing of the concrete core, buckling of the longitudinal reinforcement) local replacement of steel and/or concrete in addition to epoxy crack injection is more appropriate. In terms of expected cracking patterns, non-linear finite element investigations on well-designed reinforced concrete beam-to-column joints, have shown that lower number of cracks but with wider openings are expected to occur for larger compressive concrete strength, f’c, and lower reinforcement content, ρs. It was also observed that the tensile concrete strength, ft, strongly affects the expected cracking pattern in the beam-column joints, the latter being more uniformly distributed for lower ft values. Strain rate effects do not seem to play an important role on the cracking pattern. However, small variations in the cracking pattern were observed for low reinforcement content as it approaches to the minimum required as per NZS 3101:2006. Simple equations are proposed in this research project to relate the maximum and residual crack widths with the steel strain at peak displacement, with or without axial load. A literature review on fracture of reinforcing steel due to low-cycle fatigue, including recent research using steel manufactured per New Zealand standards is also presented. Experimental results describing the influence of the cyclic effect on the ultimate strain capacity of the steel are also discussed, and preliminary equations to account for that effect are proposed. A literature review on the current practice to assess the seismic residual capacity of structures is also presented. The various factors affecting the residual fatigue life at a component level (i.e., plastic hinge) of well-designed reinforced concrete frames are discussed, and equations to quantify each of them are proposed, as well as a methodology to incorporate them into a full displacement-based procedure for pre-earthquake and post-earthquake seismic assessment.

Images, UC QuakeStudies

Graffiti on a wooden wall depicts a child pointing at a site across the street and reads "I remember when the Kazbah was over there." The photographer comments, "A local street artist has commemorated Christchurch's deadliest earthquake. The anniversary is tomorrow. Where the photograph was taken was the site of the Ozone Hotel, which has now gone as well. For some of us who live and work in the East of Christchurch the earthquake was not what happened in the City as we were almost unaware of it. We had no water, toilets and most of all no electricity for weeks. For myself petrol was low and with tales of all the petrol stations on our side of town being damaged we could not take the chance of venturing out on severely damaged roads to find no petrol and the possibility of not getting home. We walked around and saw the damage that was local to us. TJ's Kazbah was one that stood out. A building that had a beauty with its round tower standing proud and always looked well kept - it was now collapsed. Its tower, which was once pointing towards the sky was laying on its side. It had kept its shape, but had a lightning shaped crack through it. The one thing that kept us feeling almost normal through the coming weeks was The Press our daily paper still being delivered even though the Press building and staff had suffered so badly themselves.

Research papers, The University of Auckland Library

The Evaluating Maternity Units (EMU) study is a mixed method project involving a prospective cohort study, surveys (two postnatal questionnaires) and focus groups. It is an Australasian project funded by the Australian Health and Medical Research Council. Its primary aim was to compare the birth outcomes of two groups of well women – one group who planned to give birth at a primary maternity unit, and a second group who planned to give birth at a tertiary hospital. The secondary aim was to learn about women’s views and experiences regarding their birthplace decision-making, transfer, maternity care and experiences, and any other issues they raised. The New Zealand arm of the study was carried out in Christchurch, and was seriously affected by the earthquakes, halting recruitment at 702 participants. Comprehensive details were collected from both midwives and women regarding antenatal and early labour changes of birthplace plans and perinatal transfers from the primary units to the tertiary hospital. Women were asked about how they felt about plan changes and transfers in the first survey, and they were discussed in some focus groups. The transfer findings are still being analysed and will be presented. This study is set within the local maternity context, is recent, relevant and robust. It provides midwives with contemporary information about transfers from New Zealand primary maternity units and women’s views and experiences. It may help inform the conversations midwives have with each other, and with women and their families/whānau, regarding the choices of birthplace for well childbearing women.

Research papers, Victoria University of Wellington

<b>Ōtautahi-Christchurch faces the future in an enviable position. Compared to other New Zealand cities Christchurch has lower housing costs, less congestion, and a brand-new central city emerging from the rubble of the 2011 earthquakes. ‘Room to Breathe: designing a framework for medium density housing (MDH) in Ōtautahi-Christchurch’ seeks to answer the timely question how can medium density housing assist Ōtautahi-Christchurch to respond to growth in a way that supports a well-functioning urban environment? Using research by design, the argument is made that MDH can be used to support a safe, accessible, and connected urban environment that fosters community, while retaining a level of privacy. This is achieved through designing a neighbourhood concept addressing 3 morphological scales- macro- the city; meso- the neighbourhood; and micro- the home and street. The scales are used to inform a design framework for MDH specific to Ōtautahi-Christchurch, presenting a typological concept that takes full advantage of the benefits higher density living has to offer.</b> Room to Breathe proposes repurposing underutilised areas surrounding existing mass transit infrastructure to provide a concentrated populous who do not solely rely on private vehicles for transport. By considering all morphological scales Room to Breathe provides one suggestion on how MDH could become accepted as part of a well-functioning urban environment.

Images, Alexander Turnbull Library

A man has climbed an active volcano and pitched a tent in order to get away from the Canterbury earthquake and the flooding in the lower North Island. Refers to the Christchurch earthquake of 4th September 2010 as well as the heavy rain, slips, and flooding from Whanganui in the centre of the North Island down to the Rimutaka Hill Road, North of Wellington. Quantity: 1 digital cartoon(s).