Search

found 4839 results

Images, Alexander Turnbull Library

The cartoon depicts a rose window set in a stone wall. The glass circles each contain a dollar sign. Refers to the future of the Christchurch Cathedral after the Canterbury earthquakes of 2010 and 2011. The Anglican Church seemed to only consider the money in arguing that it would be too expensive to be repaired or rebuilt. Title from file name Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Orana Wildlife Park 'lodge' sleeps passengers from Christchurch airport with no accommodation and who would otherwise sleep at the terminal. The Park staff think that 'they get free accommodation and we have a new paying exhibit!' They have also put up a notice: 'Cheapskates - Do not feed'. Is this a solution to airport 'night kippers'? The shortage of accommodation in Christchurch due to earthquake damage led many air travellers to sleep overnight at the air terminal. Quantity: 1 digital cartoon(s).

Audio, Radio New Zealand

A school pool, a BMX bike club and a music school are among twenty organisations in Christchurch that have benefitted from the final grants from an international appeal for re-building the quake-damaged city. The Christchurch Earthquake Appeal has so far raised almost 100 million dollars, and as our reporter Teresa Cowie discovered, the latest 8 million dollars that's been released from the fund is giving a welcome boost to residents.

Images, UC QuakeStudies

A digitally manipulated image of the high diving boards at QEII swimming pool. Rubble has fallen on the boards during the demolition of the complex. The photographer comments, "The diving board at the QEII stadium swimming pool during its demolition after being damaged in the Christchurch earthquake in February 2011".

Videos, UC QuakeStudies

A video of a tour of the Christchurch Arts Centre, lead by Director Ken Franklin. Franklin talks about the strengthening work which was done to the Arts Centre before the earthquakes, the damage caused by the 4 September 2010 earthquake, and the importance of preserving the character of the buildings.

Images, eqnz.chch.2010

One Month after the Christchurch Earthquake. This is in Kaiapoi at the north end of Christchurch. A view down the walkway next to the river Twitter | Facebook |

Research Papers, Lincoln University

At 4.35 a.m. on the 4th of September 2010 Christchurch residents were shaken awake by a magnitude 7.1 earthquake, the largest earthquake to hit urban New Zealand for nearly 80 years. It was a large earthquake. On average the world only has 17 earthquakes a year larger than magnitude seven. Haiti’s earthquake in January 2010 was magnitude 7.1 and Chile’s earthquake in February was magnitude 8.8. Although it was a big quake, Christchurch was lucky. In Haiti’s earthquake over 230,000 people were killed and in Chile 40,000 homes were destroyed. Happily this was not the situation in Christchurch, however the earthquake has caused considerable damage. The challenge for the Landscape Architecture community is to contribute to the city’s reconstruction in ways that will not only fix the problems of housing, and the city’s urban, suburban and neighbourhood fabric but that will do so in ways that will help solve the landscape problems that dogged the city before the earthquake struck.

Images, eqnz.chch.2010

The quake-damaged facade of the Baptist Church at the Kilmore Street / Madras Street intersection being propped up while repairs are in progress.

Images, eqnz.chch.2010

The quake-damaged facade of the Baptist Church at the Kilmore Street / Madras Street intersection being propped up while repairs are in progress.

Images, eqnz.chch.2010

The quake-damaged facade of the Baptist Church at the Kilmore Street / Madras Street intersection being propped up while repairs are in progress.

Images, eqnz.chch.2010

The quake-damaged facade of the Baptist Church at the Kilmore Street / Madras Street intersection being propped up while repairs are in progress.

Images, eqnz.chch.2010

The quake-damaged facade of the Baptist Church at the Kilmore Street / Madras Street intersection being propped up while repairs are in progress.

Images, eqnz.chch.2010

The quake-damaged facade of the Baptist Church at the Kilmore Street / Madras Street intersection being propped up while repairs are in progress.

Images, eqnz.chch.2010

The quake-damaged facade of the Baptist Church at the Kilmore Street / Madras Street intersection being propped up while repairs are in progress.

Research papers, University of Canterbury Library

The 2010-2011 Canterbury earthquake sequence was extremely damaging to structures in Christchurch and continues to have a large economic and social impact on the city and surrounding regions. In addition to strong ground shaking (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE), extensive liquefaction was observed, particularly in the 4 September 2010 Darfield earthquake and the 22 February 2011 Christchurch earthquake (Cubrinovski et al. 2010 BNZSEE; 2011 SRL). Large observed vertical ground motion amplitudes were recorded in the events in this sequence, with vertical peak ground accelerations of over 2.2g being observed at the Heathcote Valley Primary School during the Christchurch earthquake, and numerous other vertical motions exceeding 1.0g (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE; Fry et al 2011 SRL). Vertical peak ground accelerations of over 1.2g were observed in the Darfield earthquake.

Research papers, University of Canterbury Library

The magnitude 6.2 Christchurch earthquake struck the city of Christchurch at 12:51pm on February 22, 2011. The earthquake caused 186 fatalities, a large number of injuries, and resulted in widespread damage to the built environment, including significant disruption to lifeline networks and health care facilities. Critical facilities, such as public and private hospitals, government, non-government and private emergency services, physicians’ offices, clinics and others were severely impacted by this seismic event. Despite these challenges many systems were able to adapt and cope. This thesis presents the physical and functional impact of the Christchurch earthquake on the regional public healthcare system by analysing how it adapted to respond to the emergency and continued to provide health services. Firstly, it assesses the seismic performance of the facilities, mechanical and medical equipment, building contents, internal services and back-up resources. Secondly, it investigates the reduction of functionality for clinical and non-clinical services, induced by the structural and non-structural damage. Thirdly it assesses the impact on single facilities and the redundancy of the health system as a whole following damage to the road, power, water, and wastewater networks. Finally, it assesses the healthcare network's ability to operate under reduced and surged conditions. The effectiveness of a variety of seismic vulnerability preparedness and reduction methods are critically reviewed by comparing the observed performances with the predicted outcomes of the seismic vulnerability and disaster preparedness models. Original methodology is proposed in the thesis which was generated by adapting and building on existing methods. The methodology can be used to predict the geographical distribution of functional loss, the residual capacity and the patient transfer travel time for hospital networks following earthquakes. The methodology is used to define the factors which contributed to the overall resilence of the Canterbury hospital network and the areas which decreased the resilence. The results show that the factors which contributed to the resilence, as well as the factors which caused damage and functionality loss were difficult to foresee and plan for. The non-structural damage to utilities and suspended ceilings was far more disruptive to the provision of healthcare than the minor structural damage to buildings. The physical damage to the healthcare network reduced the capacity, which has further strained a health care system already under pressure. Providing the already high rate of occupancy prior to the Christchurch earthquake the Canterbury healthcare network has still provided adequate healthcare to the community.

Research papers, University of Canterbury Library

Following the 2010/2011 Canterbury earthquakes, approximately 60% of multi-story buildings with reinforced concrete walls required demolition. Both practitioners and researchers have increasingly realized that low-damage structural systems could be an alternative to improve the seismic behaviour of concrete buildings and to reduce the economic and social impact of structural damage in future earthquakes. To verify the seismic response of a low-damage concrete wall building representing state-of-art design practice, a shake table test on a two-story concrete building was recently conducted as part of an ILEE-QuakeCoRE collaborative research program. The building utilized flexible wall-to-floor connections in the long span direction and isolating wall-to-floor devices in the short span direction to provide a comparison of their respective behaviour. Additionally, the wall-to-floor interaction such as effects of wall uplift on the link slab, and force transfer mechanism from floor to the wall will be discussed in this paper.

Images, UC QuakeStudies

A photograph of earthquake damage to the Crown Masonic Lodge on Wordsworth Street, also known as the Freemasons Centre. Sections of this brick wall at the front of the building have collapsed.

Images, UC QuakeStudies

A photograph of earthquake damage to the Crown Masonic Lodge on Wordsworth Street, also known as the Freemasons Centre. Sections of this brick wall at the front of the building have collapsed.