Search

found 450 results

Images, eqnz.chch.2010

The St John The Evangelist Catholic Church in Leeston was cordoned off due to damage suffered during the magnitude 7.1 earthquake that struck mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

The farmer swore that his fence was erected in a straingt line, but mother nature had other ideas! Aftermath of the Saturday 4 September 2010 magnitude 7.1 earthquake at the previously unknown faultline along which the quake originated.

Images, eqnz.chch.2010

The farmer swore that his hedge was planted in a straingt line, but mother nature had other ideas! Aftermath of the Saturday 4 September 2010 magnitude 7.1 earthquake at the previously unknown faultline along which the quake originated.

Images, eqnz.chch.2010

The magnitude 7.1 earthquake that struck mid-Canterbury on Saturday 4 September 2010 broke the tip of the spire of the St John The Evangelist Catholic Church in Leeston

Images, eqnz.chch.2010

The farmer swore that his fence was erected in a straingt line, but mother nature had other ideas! Aftermath of the Saturday 4 September 2010 magnitude 7.1 earthquake at the previously unknown faultline along which the quake originated.

Images, eqnz.chch.2010

The farmer swore that his fence and hedge were in a straingt line, but mother nature had other ideas! Aftermath of the Saturday 4 September 2010 magnitude 7.1 earthquake at the previously unknown faultline along which the quake originated.

Images, eqnz.chch.2010

The ground slipped laterally at this previously unknown faultline across Highfield Road in mid-Canterbury, resulting in a relative displacement of at least 2 metres and the magnitude 7.1 earthquake on Saturday 4 September 2010. Note the now misaligned fence posts, hedge and road.

Images, eqnz.chch.2010

Cracks have ripped through external columns of this 7 storey building (corner of Hereford Street / Manchester Street), and efforts are being made to shore up and strengthen it to save it from demolition after it suffered structural damage in the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Images, eqnz.chch.2010

Cracks have ripped through external columns of this 7 storey building (corner of Hereford Street / Manchester Street), and efforts are being made to shore up and strengthen it to save it from demolition after it suffered structural damage in the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Images, eqnz.chch.2010

Cracks have ripped through external columns of this 7 storey building (corner of Hereford Street / Manchester Street), and efforts are being made to shore up and strengthen it to save it from demolition after it suffered structural damage in the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Images, Alexander Turnbull Library

The cartoon shows the leader of the new Mana Party, Hone Harawira, in four frames that illustrate 'The aftershock', 'the shake-up', 'the waiting & anxiety!...' and in the last frame 'the liquefaction...' as he sinks up to his chest in 'Poll Street'. Context - In fact Hone Harawira won the Te Tai Tokerau by-election with a majority of 1,117 votes, followed fairly closely by Kelvin Davis (Labour). The Labour and Mana candidates seemed to be neck and neck just before the election on 26 June 2011. The cartoon uses earthquake imagery to illustrate the emotional roller-coaster for Hone Harawira. Quantity: 1 digital cartoon(s).

Images, eqnz.chch.2010

This statue of the Virgin Mary stood in the south tower of The Cathedral of the Blessed Sacrament and had been facing inside from when she was placed there and through the September 2010 earthquake. That changed on February 22 2010 at 12.51pm when Christchurch was rocked by a 6.3 magnitude earthquake. During the violent shaking motion Mary was t...

Articles, UC QuakeStudies

This report describes the earthquake hazard in Ashburton district and gives details of historic earthquakes. It includes district-scale (1:250,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. The report describes earthquake scenarios for a magnitude 7.0-7.3 earthquake on the Mt Hutt-Mt Peel Fault Zone and a magnitude 8 Alpine Fault earthquake. See Object Overview for background and usage information.

Articles, UC QuakeStudies

This report describes the earthquake hazard in Selwyn district and gives details of historic earthquakes. It includes district-scale (1:250,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. The report describes earthquake scenarios for a magnitude 7.0-7.3 earthquake on the Porters Pass-Amberley Fault Zone and a magnitude 8 Alpine Fault earthquake. See Object Overview for background and usage information.

Articles, UC QuakeStudies

This report describes the earthquake hazard in Timaru district and gives details of historic earthquakes. It includes district-scale (1:250,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. The report describes earthquake scenarios for a magnitude 7.0-7.3 earthquake on the Mt Hutt-Mt Peel Fault Zone and a magnitude 8 Alpine Fault earthquake. See Object Overview for background and usage information.

Research papers, University of Canterbury Library

Recent severe earthquakes, such as Christchurch earthquake series, worldwide have put emphasis on building resilience. In resilient systems, not only life is protected, but also undesirable economic effects of building repair or replacement are minimized following a severe earthquake. Friction connections are one way of providing structure resilience. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs), and the symmetric friction connections (SFCs) in braces of the braced frames. Experimental and numerical studies on components have been conducted internationally. However, actual building performance depends on the many interactions, occurring within a whole building system, which may be difficult to determine accurately by numerical modelling or testing of structural components alone. Dynamic inelastic testing of a full-scale multi-storey composite floor building with full range of non-structural elements (NSEs) has not yet been performed, so it is unclear if surprises are likely to occur in such a system. A 9 m tall three-storey configurable steel framed composite floor building incorporating friction-based connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. Beams and columns are designed to remain elastic during an earthquake event, with all non-linear behaviour occurring through stable sliding frictional behaviour, dissipating energy by SHJAFCs used in MRFs and SFCs in braced frames, with and without Belleville springs. Structural systems are configurable, allowing different moment and braced frame structural systems to be tested in two horizontal directions. In some cases, these systems interact with rocking frame or rocking column system in orthogonal directions subjected to unidirectional and bidirectional horizontal shaking. The structure is designed and detailed to undergo, at worst, minor damage under series of severe earthquakes. NSEs applied include precast-concrete panels, glass curtain walling, internal partitions, suspended ceilings, fire sprinkler piping as well as some other common contents. Some of the key design considerations are presented and discussed herein

Videos, UC QuakeStudies

A video capturing an aftershock from the Canterbury earthquake on 22 February 2011, 1:04pm. After the 6.3 magnitude earthquake at 12:51pm, Ben Post set up his camera on a tripod and left it running. The movement of the water in the fish tank during the quake suggests that the shaking is up and down. The camera also shows this effect; due to the lightweight material of the tripod, the camera is shaken about more than the surroundings.

Images, Alexander Turnbull Library

The title reads 'All shook up.... The cartoon shows the year '2010' shaking and dropping bits off the ends of the numbers. A second version has pupils inside the two zeros so that they look like eyes. Context - The Christchurch earthquake of 4 September 2010 and aftershocks which are continuing into 2011. 'All shook up' is the name of a song made famous by Elvis Presley. Quantity: 2 digital cartoon(s).

Audio, Radio New Zealand

Tests have revealed that New Zealand's latest building designs will stand up to earthquakes of a greater intensity than the ones that occurred in Christchurch and Kaikōura. Researchers from the University of Auckland and Canterbury, in collaboration with QuakeCoRE and Tongji University in China, built a two-storey concrete building and put it on one of the largest shake tables in the world. All of the building's details were based on existing buildings in Wellington and Christchurch. The project leader is the University of Auckland's Dr Rick Henry. He talks to Guyon Espiner.

Research papers, University of Canterbury Library

Recent severe earthquakes, such as the 2010-2011 Christchurch earthquake series, have put emphasis on building resilience all over the world. To achieve such resilience, procedures for low damage seismic design have been developed to satisfy both life safety requirements and the need to minimize undesirable economic effects of required building repair or structural member replacement following a major earthquake. Seismic resisting systems following this concept are expected to withstand severe earthquakes without requiring major post-earthquake repairs, using isolating mechanisms or sacrificial systems that either do not need repair or are readily repairable or replaceable. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs) and symmetric friction connections (SFCs) in braces of the braced frames. A 9 m tall, configurable three-storey steel framed composite floor building incorporating frictionbased connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. The structural systems are configurable, allowing different moment and braced frame structural systems tested in two horizontal directions. The structure is designed and detailed to undergo, at worst, minor damage under a planned series of severe earthquakes.

Images, Alexander Turnbull Library

The cartoon shows a man, a woman and a dog all yelling with fright. Refers to the series of severe aftershocks that again rocked Christchurch on January 2nd. The largest was a magnitude-5.5 shake shortly before 6am. All were centred at sea off New Brighton. Mayor Bob Parker said that fear that larger quakes could be triggered had been raised by residents, but the tsunami threat was "highly unlikely". Quantity: 1 digital cartoon(s).

Audio, Radio New Zealand

Mention the words "earthquake" in the same brief as "remediation" and it's enough to strike fear in the hearts of all New Zealanders, particularly those in Christchurch and other earthquake prone areas of the country. Now we find the chances of the ground shaking more violently in a quake is much higher than previously thought for large parts of the country. In some places it has doubled or even trebled. What are the ramifications of this new found knowledge? Joining the show to discuss is Michelle Grant, President of the Structural Engineering Society New Zealand, and Matt Gerstenberger, Principal Scientist and Seismologist at GNS Science

Articles, UC QuakeStudies

This report describes the earthquake hazard in Waimate and Mackenzie districts and the part of Waitaki district within Canterbury, and gives details of historic earthquakes. It includes district-scale (1:500,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. The report describes earthquake scenarios for a magnitude 7.2-7.4 Ostler Fault earthquake near Twizel, a magnitude 8 Alpine Fault earthquake, and a magnitude 6.9 Hunters Hills Fault Zone earthquake near Waimate. See Object Overview for background and usage information.

Images, Alexander Turnbull Library

Text at the top of the cartoon reads 'News - A "Moon man non-event lunch" will be held above Christchurch to defy quake predictions for that day'. In tea rooms on hills above Christchurch a group of people enjoy lunch as they defy precaution against a predicted earthquake. They order a 'pot o' tea', 'pie & chips', 'sandwich & coke' and a 'shake & roll'; above in a black and thunderous cloud God thinks he heard someone request a shake & a roll'. Context - After the two big earthquakes in Christchurch on 4 September 2010 and 22 February 2011, the so-called Moon Man Ken Ring is backing away from his prediction that Christchurch will be whacked by a huge earthquake today (20 March 2011). His claims have terrified Cantabrians and led to people fleeing Christchurch. M.P. Nick Smith and the Skeptics Society are planning a lunch in one of Christchurch's highest, oldest, stone buildings - on the day that "moon man" Ken Ring says the city will be hit by another devastating earthquake ; the lunch will be held at noon on March 20 at the Sign of the Kiwi, on the top of the Port Hills - which Smith said was the closest building to the epicentre of the February 22 quake. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

The September 2010 Canterbury and February 2011 Christchurch earthquakes and associated aftershocks have shown that the isolator displacement in Christchurch Women's Hospital (Christchurch City's only base-isolated structure) was significantly less than expected. Occupant accounts of the events have also indicated that the accelerations within the hospital superstructure were larger than would usually be expected within a base-isolated structure and that residual low-level shaking lasts for a longer period of time following the strong-motion of an event than for non-isolated structures.

Research papers, University of Canterbury Library

Voluntary turnover has been the subject of scholarly inquiry for more than 100 years and much is understood about the drivers of turnover, and the decision-making processes involved. To date most models of voluntary turnover have assumed a rational and sequential decision process, initiated primarily by dissatisfaction with the job and the perceived availability of alternatives. Operating within a strong predictive research agenda, countless studies have sought to validate, extend and refine these traditional models through the addition of distal antecedents, mediators, moderators, and proximal antecedents of turnover. The net result of this research is a large body of empirical support for a somewhat modest relationship between job dissatisfaction, perceived alternatives, turnover intentions, job search behaviour and actual turnover. Far less scholarly attention has been directed at understanding shock-induced turnover that is not necessarily derived from dissatisfaction. Moreover, almost no consideration has been given to understanding how a significant and commonly experienced extra-organisational shock, such as natural disaster, might impact turnover decision making. Additionally, the dynamic and cumulative impacts of multiple shocks on turnover decision making have to date not been examined by turnover researchers. In addressing these gaps this thesis presents a leaver-centric theory of employee turnover decision making that is grounded in the post-disaster context. Data for the study were collected from in-depth interviews with 31 leavers in four large organisations in Christchurch, New Zealand; an area that experienced a major natural disaster in the form of the Canterbury earthquake sequence. This context provided a unique setting in which to study turnover as the primary shock was followed by a series of smaller shocks, resulting in a period of sustained disruption to the pre-shock status quo. Grounded theory methods are used to develop a typology of leaving which describes four distinct patterns of turnover decision making that follow a significant extra-organisational shock. The proposed typology not only addresses the heterogeneous and complex nature of turnover decision making, but also provides a more nuanced explanation of the turnover process explicating how the choice of decision path followed is influenced by four contextual factors which emerged from the data: (1) pre-shock motivational state; (2) decision difficulty; (3) experienced shock magnitude; and (4) the availability of resources. The research findings address several shortcomings in the extant literature on employee turnover, and offer practical recommendations for managers seeking to retain employees in a post-disaster setting.

Research papers, University of Canterbury Library

The Canterbury Region is susceptible to a variety of natural hazards, including earthquakes, landslides and climate hazards. Increasing population and tourism within the region is driving development pressures and as more and more development occurs, the risk from natural hazards increases. In order to avoid development occurring in unacceptably vulnerable locations, natural hazard assessments are required. This study is a reconnaissance natural hazard assessment of Lakes Lyndon, Coleridge and Tekapo. There is restricted potential for development at Lake Lyndon, because the land surrounding the lake is owned by the Crown and has a number of development restrictions. However, there is the potential for conservation or recreation-linked development to occur. There is more potential for development at Lake Coleridge. Most of the land surrounding the lake is privately owned and has less development restrictions. The majority of land surrounding Lake Tekapo is divided into Crown-owned pastoral leases, which are protected from development, such as subdivision. However, there are substantial areas around the lake, which are privately owned and, therefore, have potential for development. Earthquake, landslide and climate hazards are the main natural hazards threatening Lakes Lyndon, Coleridge and Tekapo. The lakes are situated in a zone of active earth deformation in which large and relatively frequent earthquakes are produced. A large number of active faults lie within 15 km of each lake, which are capable of producing M7 or larger earthquakes. Ground shaking, liquefaction, landslides, tsunami and seiches are among the consequences of earthquakes, all of which have the potential to cause severe damage to lives, lifelines and infrastructure. Landslides are also common in the landscape surrounding the lakes. The majority of slopes surrounding the lakes are at significant risk from earthquake-induced failure under moderate to strong earthquake shaking. This level of shaking is expected to occur in any 50 year period around Lakes Lyndon and Coleridge, and in any 150 year period around Lake Tekapo. Injuries, fatalities and property damage can occur directly from landslide impact or from indirect effects such as flooding from landslide-generated tsunami or from landslide dam outbreaks. Lakes Lyndon, Coleridge and Tekapo are also susceptible to climate hazards, such as high winds, drought, heavy snowfall and heavy rainfall, which can lead to landslides and flooding. Future climate change due to global warming is most likely going to affect patterns of frequency and magnitudes of extreme weather events, leading to an increase in climate hazards. Before development is permitted around the lakes, it is essential that each of these hazards is considered so that unacceptably vulnerable areas can be avoided.