A photograph captioned by Paul Corliss, "Great Wall of Sumner container art".
A photograph captioned by BeckerFraserPhotos, "A collapsed stone wall in Godley Quay, Lyttelton".
A photograph captioned by BeckerFraserPhotos, "A collapsed stone wall in Godley Quay, Lyttelton".
A photograph of a house damaged by the collapse of the cliff behind it. The photograph is captioned by Paul Corliss, "Redcliffs and Sumner".
Photograph captioned by BeckerFraserPhotos, "The gigantic rock that destroyed the Sumner RSA as it fell from the cliff above on February 22".
The Sumner cliffs photographed from the South Brighton spit. Shipping containers can be seen along Main Road to protect passing cars from rock fall.
Photograph captioned by BeckerFraserPhotos, "16 March, 2011. Redcliffs School with the rock fall behind which is the reason the school is closed".
A crushed trailer on a property in Redcliffs. A large rock from cliff above fell onto the trailer during the 22 February 2011 earthquake.
A review of the literature showed the lack of a truly effective damage avoidance solution for timber or hybrid timber moment resisting frames (MRFs). Full system damage avoidance selfcentring behaviour is difficult to achieve with existing systems due to damage to the floor slab caused by beam-elongation. A novel gravity rocking, self-centring beam-column joint with inherent and supplemental friction energy dissipation is proposed for low-medium rise buildings in all seismic zones where earthquake actions are greater than wind. Steel columns and timber beams are used in the hybrid MRF such that both the beam and column are continuous thus avoiding beam-elongation altogether. Corbels on the columns support the beams and generate resistance and self-centring through rocking under the influence of gravity. Supplemental friction sliders at the top of the beams resist sliding of the floor whilst dissipating energy as the floor lifts on the corbels and returns. 1:20 scale tests of 3-storey one-by-two bay building based on an earlier iteration of the proposed concept served as proof-of-concept and highlighted areas for improvement. A 1:5 scale 3-storey one-by-one bay building was subsequently designed. Sub-assembly tests of the beam-top asymmetric friction sliders demonstrated repeatable hysteresis. Quasi-static tests of the full building demonstrated a ‘flat bottomed’ flag-shaped hysteresis. Shake table tests to a suite of seven earthquakes scaled for Wellington with site soil type D to the serviceability limit state (SLS), ultimate limit state (ULS) and maximum credible event (MCE) intensity corresponding to an average return period of 25, 500 and 2500 years respectively were conducted. Additional earthquake records from the 22 February 2011 Christchurch earthquakes we included. A peak drift of 0.6%, 2.5% and 3.8% was reached for the worst SLS, ULS and MCE earthquake respectively whereas a peak drift of 4.5% was reached for the worst Christchurch record for tests in the plane of the MRF. Bi-directional tests were also conducted with the building oriented at 45 degrees on the shake table and the excitation factored by 1.41 to maintain the component in the direction of the MRF. Shear walls with friction slider hold-downs which reached similar drifts to the MRF were provided in the orthogonal direction. Similar peak drifts were reached by the MRF in the bi-directional tests, when the excitation was amplified as intended. The building self-centred with a maximum residual drift of 0.06% in the dynamic tests and demonstrated no significant damage. The member actions were magnified by up to 100% due to impact upon return of the floor after uplift when the peak drift reached 4.5%. Nonetheless, all of the members and connections remained essentially linearelastic. The shake table was able to produce a limited peak velocity of 0.275 m/s and this limited the severity of several of the ULS, MCE and Christchurch earthquakes, especially the near-field records with a large velocity pulse. The full earthquakes with uncapped velocity were simulated in a numerical model developed in SAP2000. The corbel supports were modelled with the friction isolator link element and the top sliders were modelled with a multi-linear plastic link element in parallel with a friction spring damper. The friction spring damper simulated the increase in resistance with increasing joint rotation and a near zero return stiffness, as exhibited by the 1:5 scale test building. A good match was achieved between the test quasi-static global force-displacement response and the numerical model, except a less flat unloading curve in the numerical model. The peak drift from the shake table tests also matched well. Simulations were also run for the full velocity earthquakes, including vertical ground acceleration and different floor imposed load scenarios. Excessive drift was predicted by the numerical model for the full velocity near-field earthquakes at the MCE intensity and a rubber stiffener for increasing the post joint-opening stiffness was found to limit the drift to 4.8%. Vertical ground acceleration had little effect on the global response. The system generates most of its lateral resistance from the floor weight, therefore increasing the floor imposed load increased the peak drift, but less than it would if the resistance of the system did not increase due to the additional floor load. A seismic design procedure was discussed under the framework of the existing direct displacement-based design method. An expression for calculating the area-based equivalent viscous damping (EVD) was derived and a conservative correction factor of 0.8 was suggested. A high EVD of up to about 15% can be achieved with the proposed system at high displacement ductility levels if the resistance of the top friction sliders is maximised without compromising reliable return of the floor after uplift. Uniform strength joints with an equal corbel length up the height of the building and similar inter-storey drifts result in minimal relative inter-floor uplift, except between the first floor and ground. Guidelines for detailing the joint for damage avoidance including bi-directional movement were also developed.
Two of the large boulders (larger than a house or two) that came down from Castle Rock (see the fence in front of the boulders).
Looking across the mouth of the estuary to the Sumner cliffs. Shipping containers can be seen along Main Road, protecting passing cars from rock fall.
Photograph captioned by Fairfax, "Earthquake reminder: Wendy Quigley's 'You rock my world' t-shirts feature the time and date of the damaging 7.1 shake".
More than two weeks after the massive earthquake that rocked Canterbury, some living in one of Christchurch's worst hit suburbs are feeling neglected and abandoned.
Photograph captioned by Fairfax, "Day after the earthquake that rocked Christchurch. Damage to the road kitchen of homeowner Mel Whitby. Pictured with Clayton Cosgrove (R)".
A video of an interview with Andy Cole, site supervisor at Geovert, about the procedure for blasting rocks in Hillsborough. The rock-blasting work was paid for by two Christchurch couples whose properties were red-zoned and red-stickered. The couples hope that the blasting work will encourage CERA to change their land zoning from red to green, allowing them to rebuild their homes on the same sites.
Shag Rock, Sumner Beach (10.03.2011) Sumner Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleaning system + Wide-area...
The Lake Coleridge Rock Avalanche Deposits (LCRADs) are located on Ryton Station in the middle Rakaia Valley, approximately 80 km west of Christchurch. Torlesse Supergroup greywacke is the basement material and has been significantly influenced by both active tectonics and glaciation. Both glacial and post-glacial processes have produced large volumes of material which blanket the bedrock on slopes and in the valley floors. The LCRADs were part of a regional study of rock avalanches by WHITEHOUSE (1981, 1983) and WHITEHOUSE and GRIFFITHS (1983), and a single rock avalanche event was recognised with a weathering rind age of 120 years B.P. that was later modified to 150 ± 40 years B.P. The present study has refined details of both the age and the sequence of events at the site, by identifying three separate rock avalanche deposits (termed the LCRA1, LCRA2 and LCRA3 deposits), which are all sourced from near the summit of Carriage Drive. The LCRA1 deposit is lobate in shape and had an estimated original deposit volume of 12.5 x 10⁶ m³, although erosion by the Ryton River has reduced the present day debris volume to 5.1 x 10⁶ m³. An optically stimulated luminescence date taken from sandy loess immediately beneath the LCRA1 deposit provided a maximum age for the rock avalanche event of 9,720 ± 750 years B.P., which is believed to be realistic given that this is shortly after the retreat of Acheron 3 ice from this part of the valley. Emplacement of rock avalanche material into an ancestral Ryton riverbed created a natural dam with a ~17 M m³ lake upstream. The river is thought to have created a natural spillway over the dam structure at ~557 m (a.s.l), and to have existed for a number of years before any significant downcutting occurred. Although a triggering mechanism for the LCRA1 deposit was poorly constrained, it is thought that stress rebound after glacial ice removal may have initiated failure. Due to the event occurring c.10,000 years ago, there was a lack of definition for a possible earthquake trigger, though the possibility is obvious. The LCRA₂ event had an original deposit volume of 0.66 x 10⁶ m³, and was constrained to the low-lying area adjacent to the Ryton River that had been created by river erosion of the LCRA1 deposit. Further erosion by the Ryton River has reduced the deposit volume to 0.4 x 10⁶ m³. A radiocarbon date from a piece of mānuka found within the LCRA2 deposit provided an age of 668 ± 36 years B.P., and this is thought to reliably date the event. The LCRA2 event also dammed the Ryton River, and the preservation of dam-break outwash terraces downstream from the deposit provides clear evidence of rapid dam erosion and flooding after overtopping, and breaching by the Ryton River. Based on the mean annual flow of the Ryton River, the LCRA2 lake would have taken approximately two weeks to fill assuming that there were no preferred breach paths and the material was relatively impermeable. The LCRA2 event is thought to have been coseismic with a fault rupture along the western segment of the PPAFZ, which has been dated at 600 ± 100 years B.P. by SMITH (2003). The small LCRA3 event was not able to be dated, but it is believed to have failed shortly after the LCRA2 event and it may in fact be a lag deposit of the second rock avalanche event possibly triggered by an aftershock. The deposit is only visible at one locality within the cliffs that line the Ryton River, and its lack of geomorphic expression is attributed to it occurring closely after the LCRA2 event, while the Ryton River was still dammed from the second rock avalanche event. A wedge-block of some 35,000 m³ of source material for a future rock avalanche was identified at the summit of Carriage Drive. The dilation of the rock mass, combined with unfavourably oriented sub-vertical bedding in the Torlesse Supergroup bedrock, has allowed toppling-style failure on both of the main ridge lines around the source area for the LCRADs. In the event of a future rock avalanche occurring within the Ryton riverbed an emergency response plan has been developed to provide a staged response, especially in relation to the camping ground located at the mouth of the Ryton River. A long-term management plan has also been developed for mitigation measures for the Ryton riverbed and adjacent floodplain areas downstream of a future rock avalanche at the LCRAD site.
Photograph captioned by BeckerFraserPhotos, "Sumner with its long snake of containers".
Photograph captioned by Fairfax, "Christchurch Earthquake. Christchurch was rocked by a large aftershock shortly after 8am this morning. Workmen check their site from a crane".
Today the Royal couple head to Christchurch, a city with which the Prince has built strong ties, since the earthquakes rocked the region three years ago.
A temporary road sign indicates that the speed limit is 10 km/h along Rocking Horse Road in Southshore, due to the uneven surface of the road.
A photograph of Sumner and the Avon-Heathcote estuary taken prior to the 4 September 2010 earthquake. Shag Rock is visible near the centre of the photograph.
Photograph captioned by BeckerFraserPhotos, "Road signs near the container barrier at Peacocks Gallop indicating that there is a danger of rock fall in the area".
A photograph of Sumner and the Avon-Heathcote estuary taken prior to the 4 September 2010 earthquake. Shag Rock is visible near the centre of the photograph.
Sadly, Sumner’s sumptious famous Edwardian Cafe Continental only stood on the Esplanade opposite Cave Rock in Sumner for three years. Built in 1906, by Mr Martin Ridley of Christhchurch firm,…
Photograph captioned by Fairfax, "A piece of rock from the Sydenham Historic Church under his arm. The church was demolished on the corner of Colombo and Brougham Streets".
A photograph of Sumner beach and the Avon-Heathcote estuary taken prior to the 4 September 2010 earthquake. Shag Rock is visible at the left of the photograph.
A photograph of Sumner beach and the Avon-Heathcote estuary taken prior to the 4 September 2010 earthquake. Shag Rock is visible to the left of the photograph.
Photograph captioned by Fairfax, "Christchurch Earthquake aftermath. Day after the earthquake that rocked Christchurch, Jeff Springer takes some water from a Civil Defence centre in Kaiapoi North School".
Several concrete cladding panels were damaged during the 2011 Christchurch Earthquakes in New Zealand. Damage included partial collapse of panels, rupture of joint sealants, cracking and corner crushing. Installation errors, faulty connections and inadequate detailing were also contributing factors to the damage. In New Zealand, two main issues are considered in order to accommodate story drifts in the design of precast cladding panels: 1) drift compatibility of tieback or push-pull connections and 2) drift compatibility of corner joints. Tieback connections restrain the panels in the out-of-plane direction while allowing in-plane translation with respect to the building frame. Tieback connections are either in the form of slots or oversized holes or ductile rods usually located at the top of the panels. Bearing connections are also provided at the bottom of panels to transfer gravity loads. At the corners of a building, a vertical joint gap, usually filled with sealants, is provided between the two panels on the two orthogonal sides to accommodate the relative movement. In cases where the joint gap is not sufficient to accommodate the relative movements, panels can collide, generating large forces and the likely failure of the connections. On the other hand, large gaps are aesthetically unpleasing. The current design standards appear to recognize these issues but then leave most of the design and detailing to the discretion of the designers. In the installation phase, the alignment of panels is one of the main challenges faced by installers (and/or contractors). Many prefer temporary props to guide, adjust and hold the panels in place whilst the bearing connections are welded. Moreover, heat generated from extensive welding can twist the steel components inducing undesirable local stresses in the panels. Therefore, the installation phase itself is time-consuming, costly and prone to errors. This paper investigates the performance of a novel panel system that is designed to accommodate lateral inter-story drift through a ‘rocking’ motion. In order to gauge the feasibility of the system, six 2m high precast concrete panels within a single-story steel frame structure have been tested under increasing levels of lateral cyclic drift at the University of Canterbury, New Zealand. Three different panel configurations are tested: 1) a panel with return cover and a flat panel at a corner under unidirectional loading, 2) Two adjacent flat panels under unidirectional loading, and 3) Two flat panels at another oblique corner under bidirectional loading. A vertical seismic joint of 25 mm, filled with one-stage joint sealant, is provided between two of the panels. The test results show the ability of the panels with ‘rocking’ connection details to accommodate larger lateral drifts whilst allowing for smaller vertical joints between panels at corners, quick alignment and easy placement of panels without involving extensive welding on site.