A Line of Best Fit explores weakness and disconnection in the city. Weakness: There are over 600 earthquake prone buildings in Wellington. The urgency to strengthen buildings risks compromising the aesthetic integrity of the city through abrasive strengthening techniques, or losing a large portion of our built environment to demolition. The need for extensive earthquake strengthening in Wellington, Christchurch and other New Zealand cities provides an exciting opportunity for architecture. Disconnection: In Wellington pedestrian activity is focused around three main routes: Cuba Street, Lambton Quay and Courtney Place. The adjacent areas are often disconnected and lack vibrancy due to large building footprints, no-exit laneways and lack of public spaces. The Design proposes a strategy for earthquake strengthening, preserving and upgrading the built environment, and expanding and connecting the pedestrian realm. The site is two earthquake prone buildings on the block between Marion Street and Taranaki Street in central Wellington. A cut through the centre of the Aspro and Cathie Buildings ties the buildings together to strengthen and create a new arcade as public space. The cut aligns with existing pedestrian routes connecting the block with the city. The Design is divided into three components: Void, Curve, and Pattern and Structure. Void investigates the implications of cutting a portion out the existing buildings and the opportunities this provides for connection, urban interaction, and light. Curve discusses the unusual form of The Design in terms of scale, the human response and the surrounding spaces. Pattern and Structure considers the structural requirements of the project and how a void enveloped in perforated screens can strengthen the earthquake prone buildings. The importance of connection, providing strength in the city, a dialogue between old and new, and engagement with the unexpected are evaluated. Opportunities for further development and research are discussed, with particular reference to how the principles of The Design could be implemented on a larger scale throughout our cities. A Line of Best Fit is an architectural proposal that creates strength and connection.
The whare whakairo or traditional Māori meeting house plays an important part in Māori society and identity. These whare tell the tale of their origin, and in so doing, the origins of their people. The analysis of the meeting house, the histories expressed in its decorative carvings and structural elements are inextricably linked with and dependent upon the structure of the world created by myth and the Māori worldview. However, due to the deleterious effects of colonisation, the art of wood carving and associated architectural practices - central to Māori identity, suffered decline in many parts of the country, leading to the decline of Māori culture and identity. Sir Apirana Ngata instigated the National Institute of Māori Arts and Crafts to resurrect the dying art of Māori carving and carved houses would be a catalyst for the restoration of Māori culture throughout the country. Ngata saw these whare whakairo as being the heart of Māori communities by establishing a renewed sense of belonging and identification with space for Māori, through the telling of tribal histories and emphasising key geographical features. New threats in the form of global hegemony and urbanisation have further impacted on Māori notions of identity, creating a generation of displaced urban Māori youth. This research proposes to establish an architectural response to capture displaced Māori youth through the resurrection of the Māori carving school and return to them the lost stories of their cultural history and identity. This program will be developed within the complex challenges that exist within post-earthquake Ōtautahi/Christchurch, where many have lost homes and livelihoods, especially Māori youth in the Eastern Suburbs. The building elements of the proposed Māori carving school give reference to the historio-cultural features of the original Ōtautahi/Christchurch landscape that are situated in tribal song and myth. It is envisioned that the development of a Māori carving school will help restore Māori identity and a renewed sense of belonging, and allow for the telling of this generations stories through traditional narratives.
After a disaster, cities experience profound social and environmental upheaval. Current research on disasters describes this social disruption along with collective community action to provide support. Pre-existing social capital is recognised as fundamental to this observed support. This research examines the relationship between sense of place for neighbourhood, social connectedness and resilience. Canterbury residents experienced considerable and continued disruption following a large and protracted sequence of earthquakes starting in September 2010. A major aftershock on 22 February 2011 caused significant loss of life, destruction of buildings and infrastructure. Following this earthquake some suburbs of Christchurch showed strong collective action. This research examines the features of the built environment that helped to form this cooperative support. Data were collected through semi-structured interviews with 20 key informants followed by 38 participants from four case study suburbs. The objectives were to describe the community response of suburbs, to identify the key features of the built environment and the role of social infrastructure in fostering social connectedness. The last objective was to contribute to future planning for community resilience. The findings from this research indicated that social capital and community competence are significant resources to be called upon after a disaster. Features of the local environment facilitated the formation of neighbourhood connections that enabled participants to cope, manage and to collectively solve problems. These features also strengthened a sense of belonging and attachment to the home territory. Propinquity was important; the bumping and gathering places such as schools, small local shops and parks provided the common ground for meaningful pre-existing local interaction. Well-defined geography, intimate street typology, access to quality natural space and social infrastructure helped to build the local social connections and develop a sense of place. Resourceful individuals and groups were also a factor, and many are drawn to live near the inner city or more natural places. The features are the same well understood attributes that contribute to health and wellbeing. The policy and planning framework needs to consider broader social outcomes, including resilience in new and existing urban developments. The socio-political structures that provide access to secure and stable housing and local education should also be recognised and incorporated into local planning for resilience and the everyday.
On 14 November 2016, the Mw 7.8 Kaikōura earthquake caused widespread damage along the east coast of the South Island, New Zealand. Kaikōura town itself was isolated from the rest of the country by landslides blocking off major roads. While impacts from the Kaikōura earthquake on large, urban population centres have been generally well documented, this thesis aims to fill gaps in academic knowledge regarding small rural towns. This thesis investigates what, where and when critical infrastructure and lifeline service disruption occurred following the 2016 Kaikōura earthquake in a selection of small towns, and how the communities in these areas adapted to disruption. Following a robust review of literature and news media, four small rural towns were selected from North Canterbury (Culverden & Waiau) and Marlborough (Seddon & Ward) in the South Island, New Zealand. Semi-structured interview sessions with a special focus on these towns were held with infrastructure managers, emergency response and recovery officials, and organisation leaders with experience or expertise in the 2016 Kaikōura earthquake. Findings were supplemented with emergency management situation reports to produce hazard maps and infrastructure exposure maps. A more detailed analysis was conducted for Waiau involving interdependence analyses and a level of service timeline for select lifeline services. The earthquake impacted roads by blocking them with landslides, debris and surface rupture. Bridges where shaken off their abutments, breaking infrastructure links such as fibre landlines as they went. Water supplies and other forms of infrastructure relied heavily on the level of service of roads, as rough rural terrain left few alternatives. Adapting to an artificial loss of road service, some Waiau locals created their own detour around a road cordon in order to get home to family and farms. Performance of dwellings was tied to socioeconomic factors as much as proximity to the epicentre. Farmers who lost water access pulled out fences to allow stock to drink from rivers. Socioeconomic differences between farmland and township residents also contributed to resilience variations between the towns assessed in this study. Understanding how small rural towns respond and adapt to disaster allows emergency management officials and policy to be well informed and flexible with planning for multiple size classes of towns.
The Stone Jug Fault (SJF) ruptured during the November 14th, 2016 (at 12:02 am), Mw 7.8 Kaikōura Earthquake which initiated ~40 km west-southwest of the study area, at a depth of approximately 15 km. Preliminary post-earthquake mapping indicated that the SJF connects the Conway-Charwell and Hundalee faults, which form continuous surface rupture, however, detailed study of the SJF had not been undertaken prior to this thesis due to its remote location and mountainous topography. The SJF is 19 km long, has an average strike of ~160° and generally carries approximately equal components of sinistral and reverse displacement. The primary fault trace is sigmoidal in shape with the northern and southern tips rotating in strike from NNW to NW, as the SJF approaches the Hope and Hundalee faults. It comprises several steps and bends and is associated with many (N=48) secondary faults, which are commonly near irregularities in the main fault geometry and in a distributed fault zone at the southern tip. The SJF is generally parallel to Torlesse basement bedding where it may utilise pre-existing zones of weakness. Horizontal, vertical and net displacements range up to 1.4 m, with displacement profiles along the primary trace showing two main maxima separated by a minima towards the middle and ends of the fault. Average net displacement along the primary trace is ~0.4m, with local changes in relative values of horizontal and vertical displacement at least partly controlled by fault strike. Two trenches excavated across the northern segment of the fault revealed displacement of mainly Holocene stratigraphy dated using radiocarbon (N=2) and OSL (N=4) samples. Five surface-rupturing paleoearthquakes displaying vertical displacements of <1 m occurred at: 11,000±1000, 7500±1000, 6500±1000, 3500±100 and 3 (2016 Kaikōura) years BP. These events produce an average slip rate since ~11 ka of 0.2-0.4 mm/yr and recurrence intervals of up to 5500 years with an average recurrence interval of 2750 yrs. Comparison of these results with unpublished trench data suggests that synchronous rupture of the Hundalee, Stone Jug, Conway-Charwell, and Humps faults at ~3500 yrs BP cannot be discounted and it is possible that multi-fault ruptures in north Canterbury are more common than previously thought.
Though rare and unpredictable, earthquakes can and do cause catastrophic destruction when they impact unprepared and vulnerable communities. Extensive damage and failure of vulnerable buildings is a key factor which contributes to seismic-related disasters, making the proactive management of these buildings a necessity to reduce the risk of future disasters arising. The devastating Canterbury earthquakes of 2010 and 2011 brought the urgency of this issue to national importance in New Zealand. The national earthquake-prone building framework came into effect in 2017, obligating authorities to identify existing buildings with the greatest risk of collapse in strong earthquakes and for building owners to strengthen or demolish these buildings within a designated period of time. Though this framework is unique to New Zealand, the challenge of managing the seismic risk of such buildings is common amongst all seismically-active countries. Therefore, looking outward to examine how other jurisdictions legally manage this challenge is useful for reflecting on the approaches taken in New Zealand and understand potential lessons which could be adopted. This research compares the legal framework used to reduce the seismic risk of existing buildings in New Zealand with that of the similarly earthquake-prone countries of Japan and Italy. These legal frameworks are examined with a particular focus on the proactive goal of reducing risk and improving resilience, as is the goal of the international Sendai Framework for Disaster Risk Reduction 2015-2030. The Sendai Framework, which each of the case study countries have committed to and thus have obligations under, forms the legal basis of the need for states to reduce disaster risk in their jurisdictions. In particular, the states’ legal frameworks for existing building risk reduction are examined in the context of the Sendai priorities of understanding disaster risk, strengthening disaster risk governance, and investing in resilience. While this research illustrates that the case study countries have each adopted more proactive risk reduction frameworks in recent years in anticipation of future earthquakes, the frameworks currently focus on a very narrow range of existing buildings and thus are not currently sufficient for promoting the long-term resilience of building stocks. In order to improve resilience, it is argued, legal frameworks need to include a broader range of buildings subject to seismic risk reduction obligations and also to broaden the focus on long-term monitoring of potential risk to buildings.
Post-tensioned timber technology was originally developed and researched at the University of Canterbury (UC) in New Zealand in 2005. It can provide a low-damage seismic design solution for multi-storey mass timber buildings. Since mass timber products, such as cross-laminated timber (CLT), have high in-plane stiffness, a post-tensioned timber shear wall will deform mainly in a rocking mechanism. The moment capacity of the wall at the base is commonly determined using the elastic form of the Modified Monolithic Beam Analogy (MMBA). In the calculation of the moment capacity at the wall base, it is critical to accurately predict the location of the neutral axis and the timber compressive stress distribution. Three 2/3 scale 8.6m tall post-tensioned CLT walls were experimentally tested under quasi-static cyclic loading – both uni-directional and bi-directional- in this study. These specimens included a single wall, a coupled wall, and a C-shaped core-wall. The main objective was to develop post-tensioned C-shaped timber core-walls for tall timber buildings with enhanced lateral strength and stiffness. To better understand the timber compressive stress distributions at the wall base, particle tracking technology (PTT) technology was applied for the first time to investigate the behaviour of the compression toe. Previous post-tensioned timber testing primarily used the displacement measurements to determine the timber compressive behavior at the wall base or rocking interfaces. However, by using PTT technology, the timber strain measurements in the compression zone can be much more accurate as PTT is able to track the movement of many particles on the timber surface. This paper presents experimental testing results of post-tensioned CLT walls with a focus on capturing timber compressive behavior using PTT. The PTT measurements were able to better capture small base rotations which occurred at the onset of gap opening and capture unexpected phenomena in core-wall tests. The single wall test result herein presented indicates that while the MMBA could predict the moment rotation behavior with reasonable accuracy, the peak strain response was under predicted in the compression toe. Further detailed study is required to better understand the complex strain fields generated reflective of the inherent cross-thickness inhomogeneity and material variability of CLT.
We examined the stratigraphy of alluvial fans formed at the steep range front of the Southern Alps at Te Taho, on the north bank of the Whataroa River in central West Coast, South Island, New Zealand. The range front coincides with the Alpine Fault, an Australian-Pacific plate boundary fault, which produces regular earthquakes. Our study of range front fans revealed aggradation at 100- to 300-year intervals. Radiocarbon ages and soil residence times (SRTs) estimated by a quantitative profile development index allowed us to elucidate the characteristics of four episodes of aggradation since 1000 CE. We postulate a repeating mode of fan behaviour (fan response cycle [FRC]) linked to earthquake cycles via earthquake-triggered landslides. FRCs are characterised by short response time (aggradation followed by incision) and a long phase when channels are entrenched and fan surfaces are stable (persistence time). Currently, the Te Taho and Whataroa River fans are in the latter phase. The four episodes of fan building we determined from an OxCal sequence model correlate to Alpine Fault earthquakes (or other subsidiary events) and support prior landscape evolution studies indicating ≥M7.5 earthquakes as the main driver of episodic sedimentation. Our findings are consistent with other historic non-earthquake events on the West Coast but indicate faster responses than other earthquake sites in New Zealand and elsewhere where rainfall and stream gradients (the basis for stream power) are lower. Judging from the thickness of fan deposits and the short response times, we conclude that pastoral farming (current land-use) on the fans and probably across much of the Whataroa River fan would be impossible for several decades after a major earthquake. The sustainability of regional tourism and agriculture is at risk, more so because of the vulnerability of the single through road in the region (State Highway 6).
This project was initiated by ENGEO Limited and KiwiRail Holdings Limited to assess the stability of Slovens Creek Viaduct (specifically its western abutment) and a 3km section of rail corridor between Slovens Creek Viaduct and Avoca on the Midland Line (MDL). Commonly known as the scenic TranzAlpine rail journey (through Arthurs Pass National Park) the MDL connects Greymouth to Christchurch via Rolleston, where the MDL meets the Main South Line into Christchurch. The project area is approximately 40km southeast of Arthurs Pass Township, in the eastern extension of the Castle Hill Basin which is part of the Waimakariri Catchment and Canterbury Foothills. The field area is underlain by Rakaia Terrane, which is part of the Torlesse Composite Terrane forming the basement rock unit for the field area. Cretaceous-Tertiary rocks of the Castle Hill Basin overlie the basement strata and record a transgression-regression sequence, as well as mid-Oligocene submarine volcanism. The stratigraphic sequence in the Castle Hill Basin, and its eastern extension to Avoca, comprises two formations of the Eyre group, the older Broken River Formation and the younger Iron Creek Formation. Deep marine Porter Group limestones, marls, and tuffs of Oligocene age succeed the Iron Creek Formation of the Eyre Group, and probably records the maximum of the transgression. The Enys Formation lies disconformably on the Porter Group and is overlain unconformably by Late Pleistocene glacifluvial and glacial deposits. The Tertiary strata in the Slovens-Avoca rail corridor are weak, and the clay-rich tuff derived from mid-Oligocene volcanism is particularly prone to slaking. Extensive mapping carried out for this project has identified that some 90 percent of the surface along the length of the Slovens-Avoca corridor has been subject to mass movement. The landslides of the Slovens-Avoca rail corridor are clearly younger than the Last Glaciation, and Slovens Creek has been downcutting, with associated faulting and uplift, to form the present day geomorphology of the rail corridor. Deep-seated landslides in the rail corridor extend to Slovens Creek, locally deflecting the stream course, and a generic ground failure model for the rail corridor has been developed. Exploratory geotechnical investigations, including core drilling, installation of an inclinometer and a piezometer, enabled the construction of a simple ground model and cross section for the Slovens Creek Viaduct western abutment. Limit-equilibrium and pseudo-static slope stability analyses using both circular and block critical slip surface search methods were applied to the ground model for the western abutment of Slovens Creek Viaduct. Piezometric and strength data obtained during laboratory testing of core material have been used to constrain the western abutment stability assessment for one representative section line (C-C’). Prior to pseudo-static sensitivity analyses peak ground acceleration (PGA) for various Ultimate Limit State (ULS) design return periods, defined by an equation given in NZS1170.5:2004, were calculated and have been used as a calibration technique to find and compare specific PGA values for pseudo-static analyses in the Slovens Creek Viaduct area. The main purpose has been to provide an indication of how railway infrastructure could be affected by seismic events of various return periods defined by ULS design standards for the area. Limit equilibrium circular slip surface search methods, both grid search and auto refine search, indicated the slope is stable with a FoS greater than 1.0 returned from each, although one particular surface returned the lowest FoS in each. This surface is in the lower portion of the slope, adjacent to Slovens Stream and northeast of the MDL. As expected, pseudo-static analyses returned a lower FoS overall when compared to limit equilibrium analyses. The PGA analyses suggest that partial ground failure at the Slovens Creek Viaduct western abutment could occur in a 1 in 25-year return period event within materials on the slower slope beyond the immediate rail corridor. A ULS (1 in 500-year) event in the Slovens Creek Viaduct area would likely produce a PGA of ~0.9g, and the effects on the western abutment and rail infrastructure would most likely be catastrophic. Observed ground conditions for the western abutment of the Slovens Creek Viaduct suggest there is no movement within the landslide at depth within the monitoring timeframe of this project (22 May 2015 – 4 August 2015). Slope stability monitoring is recommended to be continued in two parts: (1) the inclinometer in BH1 is to be monitored on a six monthly basis for one year following completion of this thesis, and then annually unless ground movements become evident; and (2) surface movement monitoring should be installed using a fixed datum on the stable eastern abutment. Long-term stability management strategies for the Slovens Creek Viaduct western abutment are dependent upon future observed changes and ongoing monitoring. Hazard and risk assessment using the KiwiRail Qualitative Risk Assessment Framework (QRA) is recommended, and if slope stability becomes problematic for operation of the Midland Line consideration should be given to deep slope drainage. In the event of a large magnitude or high PGA earthquake all monitoring should be reviewed.
A video of a presentation by Jane Murray and Stephen Timms during the Social Recovery Stream of the 2016 People in Disasters Conference. The presentation is titled, "Land Use Recovery Plan: How an impact assessment process engaged communities in recovery planning".The abstract for this presentation reads as follows: In response to the Canterbury earthquakes, the Minister for Canterbury Earthquake Recovery directed Environment Canterbury (Canterbury's regional council) to prepare a Land Use Recovery Plan that would provide a spatial planning framework for Greater Christchurch and aid recovery from the Canterbury earthquakes. The Land Use Recovery Plan sets a policy and planning framework necessary to rebuild existing communities and develop new communities. As part of preparing the plan, an integrated assessment was undertaken to address wellbeing and sustainability concerns. This ensured that social impacts of the plan were likely to achieve better outcomes for communities. The process enabled a wide range of community and sector stakeholders to provide input at the very early stages of drafting the document. The integrated assessment considered the treatment of major land use issues in the plan, e.g. overall distribution of activities across the city, integrated transport routes, housing typography, social housing, employment and urban design, all of which have a key impact on health and wellbeing. Representatives from the Canterbury Health in All Policies Partnership were involved in designing a three-part assessment process that would provide a framework for the Land Use Recovery Plan writers to assess and improve the plan in terms of wellbeing and sustainability concerns. The detail of these assessment stages, and the influence that they had on the draft plan, will be outlined in the presentation. In summary, the three stages involved: developing key wellbeing and sustainability concerns that could form a set of criteria, analysing the preliminary draft of the Land Use Recovery Plan against the criteria in a broad sector workshop, and analysing the content and recommendations of the Draft Plan. This demonstrates the importance of integrated assessment influencing the Land Use Recovery Plan that in turn influences other key planning documents such as the District Plan. This process enabled a very complex document with wide-ranging implications to be broken down, enabling many groups, individuals and organisations to have their say in the recovery process. There is also a range of important lessons for recovery that can be applied to other projects and actions in a disaster recovery situation.
The purpose of this paper is to empirically investigate the effects of a major disaster on the management of human resources in the construction sector. It sets out to identify the construction skills challenges and the factors that affected skills availability following the 2010/2011 earthquakes in Christchurch. It is hoped that this study will provide insights for on-going reconstruction and future disaster response with respect to the problem of skills shortages. Design/methodology/approach A triangulation method was adopted. The quantitative method, namely, a questionnaire survey, was employed to provide a baseline description. Field observations and interviews were used as a follow-up to ascertain issues and potential shortages over time. Three focus groups in the form of research workshops were convened to gain further insight into the feedback and to investigate the validity and applicability of the research findings. Findings The earthquakes in Christchurch had compounded the pre-existing skills shortages in the country due to heightened demand from reconstruction. Skills shortages primarily existed in seismic assessment and design for land and structures, certain trades, project management and site supervision. The limited technical capability available nationally, shortage of temporary accommodation to house additional workers, time needed for trainees to become skilled workers, lack of information about reconstruction workloads and lack of operational capacity within construction organisations, were critical constraints to the resourcing of disaster recovery projects. Research limitations/implications The research findings contribute to the debate on skills issues in construction. The study provides evidence that contributes to an improved understanding of the industry’s skills vulnerability and emerging issues that would likely exist after a major disaster in a resource-limited country such as New Zealand. Practical implications From this research, decision makers and construction organisations can gain a clear direction for improving the construction capacity and capability for on-going reconstruction. Factors that affected the post-earthquake skills availability can be considered by decision makers and construction organisations in their workforce planning for future disaster events. The recommendations will assist them in addressing skills shortages for on-going reconstruction. Originality/value Although the study is country-specific, the findings show the nature and scale of skills challenges the construction industry is likely to face following a major disaster, and the potential issues that may compound skills shortages. It provides lessons for other disaster-prone countries where the resource pool is small and a large number of additional workers are needed to undertake reconstruction.
Following the 2010/2011 Canterbury (New Zealand) earthquakes the seismic design of buildings with precast concrete panels has received significant attention. Although this form of construction generally performed adequately in Christchurch, there were a considerable number of precast concrete panel connection failures. This observation prompted a review of more than 4700 panel details to establish representative details used in both existing and new multi-storey and low rise industrial precast concrete buildings. The detailing and quantity of each reviewed connection type in the sampled data is reported, and advantages and potential deficiencies of each connection type are discussed. Following the Canterbury earthquakes, it was observed that brittle failure had occurred in some grouted metal duct connections used for precast concrete wall panels, resulting in recommendations for more robust detailing of this connection type. A set of experimental tests was subsequently performed to investigate the in-plane seismic behaviour of precast concrete wall panel connections. This testing comprised of seven reversed cyclic in-plane tests of fullscale precast concrete wall panels having wall-to-foundation grouted metal duct connections. Walls with existing connection detailing were found to perform adequately when carrying low axial loads, but performance was found to be less satisfactory as the axial load and wall panel length increased. The use of new recommended detailing was observed to prevent brittle connection response and to improve the robustness of the reinforcement splice. A parametric investigation was conducted using the finite element method to predict the failure mode of metal duct connections. From the results of the parametric study on metal duct connections it was identified that there were three possible failure modes, being reinforcement fracture, concrete spalling without metal duct pull out, and concrete spalling with metal duct pull-out. An alternative simple analytical method was proposed in order to determine the type of connection failure without using a time-consuming finite element method. Grouted sleeves inserts are an alternative connector that is widely used to connect wall panels to the foundations. The two full-scale wall panels were subjected to reversed cyclic in-plane demands until failure of either the connection or the wall panel. Wall panel failure was due to a combination of connection reinforcement pulling-out from the coupler and reinforcement fracture. In addition, non-embedded grouted sleeve tests filled with different quality of grout were conducted by subjecting these coupler assemblages to cyclic and monotonic forces.
Voluntary turnover has been the subject of scholarly inquiry for more than 100 years and much is understood about the drivers of turnover, and the decision-making processes involved. To date most models of voluntary turnover have assumed a rational and sequential decision process, initiated primarily by dissatisfaction with the job and the perceived availability of alternatives. Operating within a strong predictive research agenda, countless studies have sought to validate, extend and refine these traditional models through the addition of distal antecedents, mediators, moderators, and proximal antecedents of turnover. The net result of this research is a large body of empirical support for a somewhat modest relationship between job dissatisfaction, perceived alternatives, turnover intentions, job search behaviour and actual turnover. Far less scholarly attention has been directed at understanding shock-induced turnover that is not necessarily derived from dissatisfaction. Moreover, almost no consideration has been given to understanding how a significant and commonly experienced extra-organisational shock, such as natural disaster, might impact turnover decision making. Additionally, the dynamic and cumulative impacts of multiple shocks on turnover decision making have to date not been examined by turnover researchers. In addressing these gaps this thesis presents a leaver-centric theory of employee turnover decision making that is grounded in the post-disaster context. Data for the study were collected from in-depth interviews with 31 leavers in four large organisations in Christchurch, New Zealand; an area that experienced a major natural disaster in the form of the Canterbury earthquake sequence. This context provided a unique setting in which to study turnover as the primary shock was followed by a series of smaller shocks, resulting in a period of sustained disruption to the pre-shock status quo. Grounded theory methods are used to develop a typology of leaving which describes four distinct patterns of turnover decision making that follow a significant extra-organisational shock. The proposed typology not only addresses the heterogeneous and complex nature of turnover decision making, but also provides a more nuanced explanation of the turnover process explicating how the choice of decision path followed is influenced by four contextual factors which emerged from the data: (1) pre-shock motivational state; (2) decision difficulty; (3) experienced shock magnitude; and (4) the availability of resources. The research findings address several shortcomings in the extant literature on employee turnover, and offer practical recommendations for managers seeking to retain employees in a post-disaster setting.
The Canterbury earthquakes of 2010 and 2011 have shone the spotlight on a number of tax issues. These issues, and in particular lessons learned from them, will be relevant for revenue authorities, policymakers and taxpayers alike in the broader context of natural disasters. Issues considered by this paper include the tax treatment of insurance monies. For example, building owners will receive pay-outs for destroyed assets and buildings which have been depreciated. Where the insurance payment is more than the adjusted tax value, there will be a taxable "gain on sale" (or depreciation recovery income). If the building owner uses those insurance proceeds to purchase a replacement asset, legislative amendments specifically enacted following the earthquakes provide that rollover relief of the depreciation recovery income is available. The tax treatment of expenditure to seismically strengthen a building is another significant issue faced by building owners. Case law has determined that this expenditure will usually be capital expenditure. In the past such costs could be capitalised to the building and depreciated accordingly. However, since the 2011-2012 income year owners have been prohibited from claiming depreciation on buildings and therefore currently no deduction is available for such strengthening expenditure (whether immediate or deferred). This has significant potential implications for landlords throughout New Zealand facing significant seismic retrofit costs. Incentives, or some form of financial support, whether delivered through the tax system or some other mechanism may be required. International Financial Reporting Standards (IFRS) require insurance proceeds, including reimbursement for expenditure of a capital nature, be reported as income while expenditure itself is not recorded as a current period expense. This has the effect of overstating current income and creating a larger variation between reported income for accounting and taxation purposes. Businesses have obligations to maintain certain business records for tax purposes. Reconstructing records destroyed by a natural disaster depends on how the information was originally stored. The earthquakes have demonstrated the benefits of ‘off-site’ (outside Canterbury) storage, in particular electronic storage. This paper considers these issues and the Inland Revenue Department (Inland Revenue) Standard Practice Statement which deals with inter alia retention of business records in electronic format and offshore record storage. Employer provided accommodation is treated as income to the benefitting employee. A recent amendment to the Income Tax Act 2007 retrospectively provides that certain employer provided accommodation is exempt from tax. The time aspect of these rules is extended where the employee is involved in the Canterbury rebuild and comes from outside the region.
The Porters Pass fault (PPF) is a prominent element of the Porters Pass-Amberley Fault Zone (PPAFZ) which forms a broad zone of active earth deformation ca 100 km long, 60-90 km west and north of Christchurch. For a distance of ca 40 km the PPF is defined by a series of discontinuous Holocene active traces between the Rakaia and Waimakariri Rivers. The amount of slip/event and the timing of paleoearthquakes are crucial components needed to estimate the earthquake potential of a fault. Movement was assumed to be, coseismic and was quantified by measuring displaced geomorphic features using either tape measure or surveying equipment. Clustering of offset data suggests that four to five earthquakes occurred on the PPF during the Holocene and these range between ca 5-7 m/event. Timing information was obtained from four trenches excavated across the fault and an auger adjacent to the fault. Organic samples from these sites were radiocarbon dated and used in conjunction with data from previous studies to identify the occurrence of at least four earthquakes at 8500 ± 200, 5300 ± 700, 2500 ± 200 and 1000 ± 100 years B.P. Evidence suggests that an additional event is also possible at 6200 ± 500 years B.P. The ~1000, 5300 and 6200 years B.P. paleoearthquakes were previously unrecognised, while the 500 year event previously inferred from rock-avalanche data has been discarded. The present data set produces recurrence intervals of ~2000-2500 years for the Holocene. The identification of only one Holocene PPF rupture to the west of Red Lakes indicates the presence of a segment boundary that prevents the propagation of rupture beyond this point. This is consistent with displacement data and results in slip rates of 0.5-0.7 mm/yr and 2.5-3.4 mm/yr to the west and east of Red Lakes respectively. It is possible that the nearby extensional Red Hill Fault influences PPF rupture propagation. The combination of geometric, slip rate and timing data has enabled the magnitude of prehistoric earthquakes on the PPF to be estimated. These magnitudes range from an average of between 6.9 for a fault rupture from Waimakariri River to Red Lakes, to a maximum of 7.4 that ruptures the entire length of the PPAFZ, including the full length of the PPF. These estimates are approximately consistent with previous magnitude estimates along the full length of the PPAFZ of between 7.0 and 7.5.
Liquefaction features and the geologic environment in which they formed were carefully studied at two sites near Lincoln in southwest Christchurch. We undertook geomorphic mapping, excavated trenches, and obtained hand cores in areas with surficial evidence for liquefaction and areas where no surficial evidence for liquefaction was present at two sites (Hardwick and Marchand). The liquefaction features identified include (1) sand blows (singular and aligned along linear fissures), (2) blisters or injections of subhorizontal dikes into the topsoil, (3) dikes related to the blows and blisters, and (4) a collapse structure. The spatial distribution of these surface liquefaction features correlates strongly with the ridges of scroll bars in meander settings. In addition, we discovered paleoliquefaction features, including several dikes and a sand blow, in excavations at the sites of modern liquefaction. The paleoliquefaction event at the Hardwick site is dated at A.D. 908-1336, and the one at the Marchand site is dated at A.D. 1017-1840 (95% confidence intervals of probability density functions obtained by Bayesian analysis). If both events are the same, given proximity of the sites, the time of the event is A.D. 1019-1337. If they are not, the one at the Marchand site could have been much younger. Taking into account a preliminary liquefaction-triggering threshold of equivalent peak ground acceleration for an Mw 7.5 event (PGA7:5) of 0:07g, existing magnitude-bounded relations for paleoliquefaction, and the timing of the paleoearthquakes and the potential PGA7:5 estimated for regional faults, we propose that the Porters Pass fault, Alpine fault, or the subduction zone faults are the most likely sources that could have triggered liquefaction at the study sites. There are other nearby regional faults that may have been the source, but there is no paleoseismic data with which to make the temporal link.
Following the 22nd February 2011, Mw 6.2 earthquake located along a previously unknown fault beneath the Port Hills of Christchurch, surface cracking was identified in contour parallel locations within fill material at Quarry Road on the lower slopes of Mount Pleasant. GNS Science, in the role of advisor to the Christchurch City Council, concluded that these cracks were a part of a potential rotational mass movement (named zone 11A) within the fill and airfall loess material present. However, a lack of field evidence for slope instability and an absence of laboratory geotechnical data on which slope stability analysis was based, suggested this conclusion is potentially incorrect. It was hypothesised that ground cracking was in fact due to earthquake shaking, and not mass movement within the slope, thus forming the basis of this study. Three soil units were identified during surface and subsurface investigations at Quarry Road: fill derived from quarry operations in the adjacent St. Andrews Quarry (between 1893 and 1913), a buried topsoil, and underlying in-situ airfall loess. The fill material was identified by the presence of organic-rich topsoil “clods” that were irregular in both size (∼10 – 200 mm) and shape, with variable thicknesses of 1 – 10 m. Maximum thickness, as indicated by drill holes and geophysical survey lines, was identified below 6 Quarry Road and 7 The Brae where it is thought to infill a pre-existing gully formed in the underlying airfall loess. Bearing strength of the fill consistently exceeded 300 kPa ultimate below ∼500 mm depth. The buried topsoil was 200 – 300 mm thick, and normally displayed a lower bearing strength when encountered, but not below 300 kPa ultimate (3 – 11 blows per 100mm or ≥100 kPa allowable). In-situ airfall loess stood vertically in outcrop due to its characteristic high dry strength and also showed Scala penetrometer values of 6 – 20+ blows per 100 mm (450 – ≥1000 kPa ultimate). All soils were described as being moist to dry during subsurface investigations, with no groundwater table identified during any investigation into volcanic bedrock. In-situ moisture contents were established using bulk disturbed samples from hand augers and test pitting. Average moisture contents were low at 9% within the fill, 11 % within the buried topsoil, and 8% within the airfall loess: all were below the associated average plastic limit of 17, 15, and 16, respectively, determined during Atterberg limit analysis. Particle size distributions, identified using the sieve and pipette method, were similar between the three soil units with 11 – 20 % clay, 62 – 78 % silt, and 11 – 20 % fine sand. Using these results and the NZGS soil classification, the loess derived fill and in-situ airfall loess are termed SILT with some clay and sand, and the buried topsoil is SILT with minor clay and sand. Dispersivity of the units was found using the Emerson crumb test, which established that the fill can be non- to completely dispersive (score 0 – 4). The buried topsoil was always non-dispersive (score 0), and airfall loess completely dispersive (score 4). Values for cohesion (c) and internal friction angle (φ) of the three soil units were established using the direct shear box at field moisture contents. Results showed all soil units had high shear strengths at the moisture contents tested (c = 18 – 24 kPa and φ = 42 – 50°), with samples behaving in a brittle fashion. Moisture content was artificially increased to 16% within the buried topsoil, which reduced the shear strength (c = 10 kPa, φ = 18°) and allowed it to behave plastically. Observational information indicating stability at Quarry Road included: shallow, discontinuous, cracks that do not display vertical offset; no scarp features or compressional zones typical of landsliding; no tilted or deformed structures; no movement in inclinometers; no basal shear zone identified in logged core to 20 m depth; low field moisture contents; no groundwater table; and high soil strength using Scala penetrometers. Limit equilibrium analysis of the slope was conducted using Rocscience software Slide 5.0 to verify the slope stability identified by observational methods. Friction, cohesion, and density values determined during laboratory were input into the two slope models investigated. Results gave minimum static factor of safety values for translational (along buried topsoil) and rotational (in the fill) slides of 2.4 – 4.2. Sensitivity of the slope to reduced shear strength parameters was analysed using c = 10 kPa and φ = 18° for the translational buried topsoil plane, and a cohesion of 0 kPa within the fill for the rotational plane. The only situation that gave a factor of safety <1.0 was in nonengineered fill at 0.5 m depth. Pseudostatic analysis based on previous peak ground acceleration (PGA) values for the Canterbury Earthquake Sequence, and predicted PGAs for future Alpine Fault and Hope Fault earthquakes established minimum factor of safety values between 1.2 and 3.3. Yield acceleration PGAs were computed to be between 0.8g and 1.6g. Based on all information gathered, the cracking at Quarry Road is considered to be shallow deformation in response to earthquake shaking, and not due to deep-seated landsliding. It is recommended that the currently bare site be managed by smoothing the land, installing contour drainage, and bioremediation of the surface soils to reduce surface water infiltration and runoff. Extensive earthworks, including removal of the fill, are considered unnecessary. Any future replacement of housing would be subject to site-specific investigations, and careful foundation design based on those results.
Reinforced concrete buildings that satisfied modern seismic design criteria generally behaved as expected during the recent Canterbury and Kaikoura earthquakes in New Zealand, forming plastic hinges in intended locations. While this meant that life-safety performance objectives were met, widespread demolition and heavy economic losses took place in the aftermath of the earthquakes.The Christchurch central business district was particularly hard hit, with over 60% of the multistorey reinforced concrete buildings being demolished. A lack of knowledge on the post-earthquake residual capacity of reinforced concrete buildings was a contributing factor to the mass demolition.Many aspects related to the assessment of earthquake-damaged reinforced concrete buildings require further research. This thesis focusses on improving the state of knowledge on the post earthquakeresidual capacity and reparability of moderately damaged plastic hinges, with an emphasis on plastic hinges typical of modern moment frame structures. The repair method focussed on is epoxy injection of cracks and patching of spalled concrete. A targeted test program on seventeen nominally identical large-scale ductile reinforced concrete beams, three of which were repaired by epoxy injection following initial damaging loadings, was conducted to support these objectives. Test variables included the loading protocol, the loading rate, and the level of restraint to axial elongation.The information that can be gleaned from post-earthquake damage surveys is investigated. It is shown that residual crack widths are dependent on residual deformations, and are not necessarily indicative of the maximum rotation demands or the plastic hinge residual capacity. The implications of various other types of damage typical of beam and column plastic hinges are also discussed.Experimental data are used to demonstrate that the strength and deformation capacity of plastic hinges with modern seismic detailing are often unreduced as a result of moderate earthquake induced damage, albeit with certain exceptions. Special attention is given to the effects of prior yielding of the longitudinal reinforcement, accounting for the low-cycle fatigue and strain ageing phenomena. A material-level testing program on the low-cycle fatigue behaviour of grade 300E reinforcing steel was conducted to supplement the data available in the literature.A reduction in stiffness, relative to the initial secant stiffness to yield, occurs due to moderate plastic hinging damage. This reduction in stiffness is shown to be correlated with the ductility demand,and a proposed model gives a conservative lower-bound estimate of the residual stiffness following an arbitrary earthquake-type loading. Repair by epoxy injection is shown to be effective in restoring the majority of stiffness to plastic hinges in beams. Epoxy injection is also shown to have implications for the residual strength and elongation characteristics of repaired plastic hinges.
During the 21st century, New Zealand has experienced increasing public concern over the quality of the design and appearance of new developments, and their effects on the urban environment. In response to this, a number of local authorities developed a range of tools to address this issue, including urban design panels to review proposals and provide independent advice. Following the 2010 and 2011 Canterbury earthquake sequence, the commitment to achieve high quality urban design within Christchurch was given further importance, with the city facing the unprecedented challenge of rebuilding a ‘vibrant and successful city’. The rebuild and regeneration reinforced the need for independent design review, putting more focus and emphasis on the role and use of the urban design panel; first through collaboratively assisting applicants in achieving a better design outcome for their development by providing an independent set of eyes on their design; and secondly in assisting Council officers in forming their recommendations on resource consent decisions. However, there is a perception that urban design and the role of the urban design panel is not fully understood, with some stakeholders arguing that Council’s urban design requirements are adding cost and complexity to their developments. The purpose of this research was to develop a better understanding on the role of the Christchurch urban design panel post-earthquake in the central city; its direct and indirect influence on the built environment; and the deficiencies in the broader planning framework and institutional settings that it might be addressing. Ultimately, the perceived role of the Panel is understood, and there is agreement that urban design is having a positive influence on the built environment, albeit viewed differently amongst the varying groups involved. What has become clear throughout this research is that the perceived tension between the development community and urban design well and truly exists, with the urban design panel contributing towards this. This tension is exacerbated further through the cost of urban design to developers, and the drive for financial return from their investments. The panel, albeit promoting a positive experience, is simply a ‘tick box’ exercise for some, and as the research suggests, groups or professional are determining themselves what constitutes good urban design, based on their attitude, the context in which they sit and the financial constraints to incorporate good design elements. It is perhaps a bleak time for urban design, and more about building homes.
At the conclusion of the 2010 and 2011 Canterbury earthquakes more than 5100 homes had been deemed unsafe for habitation. The land and buildings of these were labelled “red zoned” and are too badly damaged for remediation. These homes have been demolished or are destined for demolition. To assist the red zone population to relocate, central government have offered to ‘buy out’ home owners at the Governmental Value (GV) that was last reviewed in 2007. While generous in the economic context at the time, the area affected was the lowest value land and housing in Christchurch and so there is a capital shortfall between the 2007 property value and the cost of relocating to more expensive properties. This shortfall is made worse by increasing present day values since the earthquakes. Red zone residents have had to relocate to the far North and Western extremities of Christchurch, and some chose to move even further to neighbouring towns or cities. The eastern areas and commercial centres close to the red zone are affected as well. They have lost critical mass which has negatively impacted businesses in the catchments of the Red Zone. This thesis aims to repopulate the suburbs most affected by the abandonment of the red zone houses. Because of the relative scarcity of sound building sites in the East and to introduce affordability to these houses, an alternative method of development is required than the existing low density suburban model. Smart medium density design will be tested as an affordable and appropriate means of living. Existing knowledge in this field will be reviewed, an analysis of what East Christchurch’s key characteristics are will occur, and an examination of built works and site investigations will also be conducted. The research finds that at housing densities of 40 units per hectare, the spatial, vehicle, aesthetic needs of East Christchurch can be accommodated. Centralising development is also found to offer better lifestyle choices than the isolated suburbs at the edges of Christchurch, to be more efficient using existing infrastructure, and to place less reliance on cars. Stronger communities are formed from the outset and for a full range of demographics. Eastern affordable housing options are realised and Christchurch’s ever expanding suburban tendencies are addressed. East Christchurch presently displays a gaping scar of devastated houses that ‘The New Eastside’ provides a bandage and a cure for. Displaced and dispossessed Christchurch residents can be re-housed within a new heart for East Christchurch.
This thesis explores the lived experiences of a group of young Bhutanese former refugees between the ages of 18 to 24 years who were resettled in Christchurch between 2008 and 2010 – prior to the first major earthquake. The main goal of the thesis was to gain an understanding of their ways of coping and a second goal was to explore whether their participation in up to five mindfulness infused counselling sessions had influenced their ways of coping. A qualitative research methodology was used to guide the thesis. Participants were interviewed about the major events in their life and how they coped with them. They were then invited to participate in five sessions of mindfulness infused counselling. Approximately five weeks after their final session had ended they were invited to one final interview to explore the influence of the sessions on their ways of coping. Interviews were recorded and transcribed and research notes were taken of the mindfulness infused counselling sessions. Max van Manen’s method of phenomenology was adopted to interpret the narratives of the youth. Three main themes emerged from the data analysis and these are described as essences of lived coping experiences. The first captures their strong sense of community back in the refugee camp. The second presents the sense of resilience that exists among the Bhutanese former refugees. The third essence indicated the inner strengths of the participants which they said helped them deal with the challenging circumstances that life cast in their direction. This meant that their first experience of an earthquake was not considered the biggest event in their lives. After attending the mindfulness infused counselling sessions’ participants reported positive benefits from giving non-judgemental attention to their thoughts and feelings and they found themselves dealing with their issues proactively. For some participants their ‘accepting’ attitude facilitated better control over their emotions while others reported being able to form deeper connections with nature and other people as a result of being mindful. Other participants reported being able to make peace with the events in their past and even found that they were able to forgive those who tormented their community. However, in the absence of any major event in any of the participants’ lives in the time period following their final counselling session, the research was not able to definitely conclude that using mindful-based counselling facilitates better coping in the face extremely stressful events. There is currently very little research that focuses on the experiences of former refugee youth within New Zealand and how they utilize their capacities to deal with adversities. When this thesis commenced, the Bhutanese were the newest refugee community to be accepted for resettlement in New Zealand. This research partly addresses the limited voice of this community.
This study investigates evidence for linkages and fault interactions centred on the Cust Anticline in Northwest Canterbury between Starvation Hill to the southwest and the Ashley and Loburn faults to the northeast. An integrated programme of geologic, geomorphic, paleo-seismic and geophysical analyses was undertaken owing to a lack of surface exposures and difficulty in distinguishing active tectonic features from fluvial and/or aeolian features across the low-relief Canterbury Plains. LiDAR analysis identified surface expression of several previously unrecognised active fault traces across the low-relief aggradation surfaces of the Canterbury Plains. Their presence is consistent with predictions of a fault relay exploiting the structural mesh across the region. This is characterised by interactions of northeast-striking contractional faults and a series of re-activating inherited Late Cretaceous normal faults, the latter now functioning as E–W-striking dextral transpressive faults. LiDAR also allowed for detailed analysis of the surface expression of individual faults and folds across the Cust Anticline contractional restraining bend, which is evolving as a pop-up structure within the newly established dextral shear system that is exploiting the inherited, now re-activated, basement fault zone. Paleo-seismic trenches were located on the crest of the western arm of the Cust Anticline and across a previously unrecognised E–W-striking fault trace, immediately southwest of the steeply plunging Cust Anticline termination. These studies confirmed the location and structural style of north-northeast-striking faults and an E–W-striking fault associated with the development of this structural culmination. A review of available industry seismic reflection lines emphasised the presence of a series of common structural styles having the same underlying structural drivers but with varying degrees of development and expression, both in the seismic profiles and in surface elevations across the study area. Based on LiDAR surface mapping and preliminary re-analysis of industry seismic reflection data, four fault zones are identified across the restraining bend structural culminations, which together form the proposed Oxford–Cust–Ashley Fault System. The 2010–2012 Canterbury Earthquake Sequence showed many similarities to the structural pattern established across the Oxford–Cust–Ashley Fault System, emphasising the importance of identification and characterization of presently hidden fault sources, and the understanding of fault network linkages, in order to improve constraints on earthquake source potential. Improved understanding of potentially-interactive fault sources in Northwest Canterbury, with the potential for combined initial fault rupture and spatial and temporal rupture propagation across this fault system, can be used in probabilistic seismic hazard analysis for the region, which is essential for the suitability and sustainability of future social and economic development.
There is a relationship between inelastic deformation and energy dissipation in structures that are subjected to earthquake ground motions. Thus, if seismic energy dissipation can be achieved by means of a separate non-load bearing supplementary damping system, the load bearing structure can remain elastic with continuing serviceability following the design level earthquake. This research was carried out to investigate the advantages of using added damping in structures. The control system consists of passive friction dampers called ring spring dampers installed in the ground floor of the structure using a tendon to transmit the forces to the other parts of the structure. The ring springs dampers are friction devices consisting of inner and outer ring elements assembled to form a spring stack. External load applied to the spring produces sliding action across mating ring interfaces. The damping forces generated by the dampers and transferred in the supplemental system to the structure by the tendon and horizontal links oppose the internal loads. A four storey-two bay steel frame structure was used in the study. Experimental and analytical studies to investigate the effectiveness of a supplemental control system are presented. The model was subjected to a series of earthquake simulations on the shaking table in the Structural Laboratory of the Civil Engineering Department, at the University of Canterbury. The earthquake simulation tests have been performed on the structure both with and without the supplemental control system. The earthquake simulations were a series of gradually increasing intensity replications of two commonly used earthquake records. This thesis includes detailed description of the structural model, the supplemental control system, the ring springs dampers and the data obtained during the testing. Analyses were then carried out on a twelve storey framed structure to investigate the possible tendon arrangements and the size and type of dampers required to control the response of a real building. Guidelines for determining the appropriateness of including a supplemental damping system have been investigated. The main features of the supplemental control system adopted in this research are: • It is a passive control system with extreme reliability and having no dependence on external power sources to effect the control action. These power sources may not be available during a major earthquake. • Ring springs are steel friction devices capable of absorbing large amounts of input energy. No liquid leakage can occur and minimal maintenance is required for the ring spring dampers. • With a damper-tendon system, the distribution of the dampers throughout the structure is not so critical. Only one or two dampers are used to produce the damping forces needed, and forces are then transferred to the rest of the building by the tendon system. • It is a relatively inexpensive control system with a long useful life.
Several concrete cladding panels were damaged during the 2011 Christchurch Earthquakes in New Zealand. Damage included partial collapse of panels, rupture of joint sealants, cracking and corner crushing. Installation errors, faulty connections and inadequate detailing were also contributing factors to the damage. In New Zealand, two main issues are considered in order to accommodate story drifts in the design of precast cladding panels: 1) drift compatibility of tieback or push-pull connections and 2) drift compatibility of corner joints. Tieback connections restrain the panels in the out-of-plane direction while allowing in-plane translation with respect to the building frame. Tieback connections are either in the form of slots or oversized holes or ductile rods usually located at the top of the panels. Bearing connections are also provided at the bottom of panels to transfer gravity loads. At the corners of a building, a vertical joint gap, usually filled with sealants, is provided between the two panels on the two orthogonal sides to accommodate the relative movement. In cases where the joint gap is not sufficient to accommodate the relative movements, panels can collide, generating large forces and the likely failure of the connections. On the other hand, large gaps are aesthetically unpleasing. The current design standards appear to recognize these issues but then leave most of the design and detailing to the discretion of the designers. In the installation phase, the alignment of panels is one of the main challenges faced by installers (and/or contractors). Many prefer temporary props to guide, adjust and hold the panels in place whilst the bearing connections are welded. Moreover, heat generated from extensive welding can twist the steel components inducing undesirable local stresses in the panels. Therefore, the installation phase itself is time-consuming, costly and prone to errors. This paper investigates the performance of a novel panel system that is designed to accommodate lateral inter-story drift through a ‘rocking’ motion. In order to gauge the feasibility of the system, six 2m high precast concrete panels within a single-story steel frame structure have been tested under increasing levels of lateral cyclic drift at the University of Canterbury, New Zealand. Three different panel configurations are tested: 1) a panel with return cover and a flat panel at a corner under unidirectional loading, 2) Two adjacent flat panels under unidirectional loading, and 3) Two flat panels at another oblique corner under bidirectional loading. A vertical seismic joint of 25 mm, filled with one-stage joint sealant, is provided between two of the panels. The test results show the ability of the panels with ‘rocking’ connection details to accommodate larger lateral drifts whilst allowing for smaller vertical joints between panels at corners, quick alignment and easy placement of panels without involving extensive welding on site.
A number of reverse and strike-slip faults are distributed throughout mid-Canterbury, South Island, New Zealand, due to oblique continental collision. There is limited knowledge on fault interaction in the region, despite historical multi-fault earthquakes involving both reverse and strike-slip faults. The surface expression and paleoseismicity of these faults can provide insights into fault interaction and seismic hazards in the region. In this thesis, I studied the Lake Heron and Torlesse faults to better understand the key differences between these two adjacent faults located within different ‘tectonic domains’. Recent activity and surface expression of the Lake Heron fault was mapped and analysed using drone survey, Structure-from-Motion (SfM) derived Digital Surface Model (DSM), aerial image, 5 m-Digital Elevation Model (DEM), luminescence dating technique, and fold modelling. The results show a direct relationship between deformation zone width and the thickness of the gravel deposits in the area. Fold modelling using fault dip, net slip and gravel thickness produces a deformation zone comparable to the field, indicating that the fault geometry is sound and corroborating the results. This result Is consistent with global studies that demonstrate deposit (or soil thickness) correlates to fault deformation zone width, and therefore is important to consider for fault displacement hazard. A geomorphological study on the Torlesse fault was conducted using SfM-DSM, DEM and aerial images Ground Penetrating Radar (GPR) survey, trenching, and radiocarbon and luminescence dating. The results indicate that the Torlesse fault is primarily strike-slip with some dip slip component. In many places, the bedding-parallel Torlesse fault offsets post-glacial deposits, with some evidence of flexural slip faulting due to folding. Absolute dating of offset terraces using radiocarbon dating and slip on fault determined from lateral displacement calculating tool demonstrates the fault has a slip rate of around 0.5 mm/year to 1.0 mm/year. The likelihood of multi-fault rupture in the Torlesse Range has been characterised using paleoseismic trenching, a new structural model, and evaluation of existing paleoseismic data on the Porters Pass fault. Identification of overlapping of paleoseismic events in main Torlesse fault, flexural-slip faults and the Porters Pass fault in the Torlesse Range shows the possibility of distinct or multi-fault rupture on the Torlesse fault. The structural connectivity of the faults in the Torlesse zone forming a ‘flower structure’ supports the potential of multi-fault rupture. Multi-fault rupture modelling carried out in the area shows a high probability of rupture in the Porters Pass fault and Esk fault which also supports the co-rupture probability of faults in the region. This study offers a new understanding of the chronology, slip distribution, rupture characteristics and possible structural and kinematic relationship of Lake Heron fault and Torlesse fault in the South Island, New Zealand.
Environmental stress and disturbance can affect the structure and functioning of marine ecosystems by altering their physical, chemical and biological features. In estuaries, benthic invertebrate communities play important roles in structuring sediments, influencing primary production and biogeochemical flux, and occupying key food web positions. Stress and disturbance can reduce species diversity, richness and abundance, with ecological theory predicting that biodiversity will be at its lowest soon after a disturbance with assemblages dominated by opportunistic species. The Avon-Heathcote Estuary in Christchurch New Zealand has provided a novel opportunity to examine the effects of stress, in the form of eutrophication, and disturbance, in the form of cataclysmic earthquake events, on the structure and functioning of an estuarine ecosystem. For more than 50 years, large quantities (up to 500,000m3/day) of treated wastewater were released into this estuary but in March 2010 this was diverted to an ocean outfall, thereby reducing the nutrient loading by around 90% to the estuary. This study was therefore initially focussed on the reversal of eutrophication and consequent effects on food web structure in the estuary as it responded to lower nutrients. In 2011, however, Christchurch was struck with a series of large earthquakes that greatly changed the estuary. Massive amounts of liquefied sediments, covering up to 65% of the estuary floor, were forced up from deep below the estuary, the estuary was tilted by up to a 50cm rise on one side and a corresponding drop on the other, and large quantities of raw sewage from broken wastewater infrastructure entered the estuary for up to nine months. This study was therefore a test of the potentially synergistic effects of nutrient reduction and earthquake disturbance on invertebrate communities, associated habitats and food web dynamics. Because there was considerable site-to-site heterogeneity in the estuary, the sites in this study were selected to represent a eutrophication gradient from relatively “clean” (where the influence of tidal flows was high) to highly impacted (near the historical discharge site). The study was structured around these sites, with components before the wastewater diversion, after the diversion but before the earthquakes, and after the earthquakes. The eutrophication gradient was reflected in the composition and isotopic chemistry of primary producer and invertebrate communities and the characteristics of sediments across the sample sites. Sites closest to the former wastewater discharge pipe were the most eutrophic and had cohesive organic -rich, fine sediments and relatively depauperate communities dominated by the opportunistic taxa Capitellidae. The less-impacted sites had coarser, sandier sediments with fewer pollutants and far less organic matter than at the eutrophic sites, relatively high diversity and lower abundances of micro- and macro-algae. Sewage-derived nitrogen had became incorporated into the estuarine food web at the eutrophic sites, starting at the base of the food chain with benthic microalgae (BMA), which were found to use mostly sediment-derived nitrogen. Stable isotopic analysis showed that δ13C and δ15N values of most food sources and consumers varied spatially, temporally and in relation to the diversion of wastewater, whereas the earthquakes did not appear to affect the overall estuarine food web structure. This was seen particularly at the most eutrophic site, where isotopic signatures became more similar to the cleaner sites over two-and-a-half years after the diversion. New sediments (liquefaction) produced by the earthquakes were found to be coarser, have lower concentrations of heavy metals and less organic matter than old (existing) sediments. They also had fewer macroinvertebrate inhabitants initially after the earthquakes but most areas recovered to pre-earthquake abundance and diversity within two years. Field experiments showed that there were higher amounts of primary production and lower amounts of nutrient efflux from new sediments at the eutrophic sites after the earthquakes. Primary production was highest in new sediments due to the increased photosynthetic efficiency of BMA resulting from the increased permeability of new sediments allowing increased light penetration, enhanced vertical migration of BMA and the enhanced transport of oxygen and nutrients. The reduced efflux of NH4-N in new sediments indicated that the capping of a large portion of eutrophic old sediments with new sediments had reduced the release of legacy nutrients (originating from the historical discharge) from the sediments to the overlying water. Laboratory experiments using an array of species and old and new sediments showed that invertebrates altered levels of primary production and nutrient flux but effects varied among species. The mud snail Amphibola crenata and mud crab Austrohelice crassa were found to reduce primary production and BMA biomass through the consumption of BMA (both species) and its burial from bioturbation and the construction of burrows (Austrohelice). In contrast, the cockle Austrovenus stutchburyi did not significantly affect primary production and BMA biomass. These results show that changes in the structure of invertebrate communities resulting from disturbances can also have consequences for the functioning of the system. The major conclusions of this study were that the wastewater diversion had a major effect on food web dynamics and that the large quantities of clean and unpolluted new sediments introduced to the estuary during the earthquakes altered the recovery trajectory of the estuary, accelerating it at least throughout the duration of this study. This was largely through the ‘capping’ effect of the new liquefied, coarser-grained sediments as they dissipated across the estuary and covered much of the old organic-rich eutrophic sediments. For all aspects of this study, the largest changes occurred at the most eutrophic sites; however, the surrounding habitats were important as they provided the context for recovery of the estuary, particularly because of the very strong influence of sediments, their biogeochemistry, microalgal and macroalgal dynamics. There have been few studies documenting system level responses to eutrophication amelioration and to the best on my knowledge there are no other published studies examining the impacts of large earthquakes on benthic communities in an estuarine ecosystem. This research gives valuable insight and advancements in the scientific understanding of the effects that eutrophication recovery and large-scale disturbances can have on the ecology of a soft-sediment ecosystem.
In the aftermath of the 2011 earthquake, a state of polycentric urbanity was thrust upon New Zealand’s second largest city. As the city-centre lay in disrepair, smaller centres started to materialise elsewhere, out of necessity. Transforming former urban peripheries and within existing suburbs into a collective, dispersed alternative to the city centre, these sub-centres prompted a range of morphological, socio-cultural and political transformations, and begged multiple questions: how to imbue these new sub-centres with gravity? How to render them a genuine alternative to the CBD? How do they operate within the wider city? How to cope with the physical and cultural transformations of this shifting urbanscape and prevent them occurring ad lib? Indeed, the success and functioning of the larger urban structure hinges upon a critical, informed response to these sub-centre urban contexts. Yet, with an unrelenting focus on the CBD rebuild - effectively a polycentric denial - little such attention has been granted. Taking this urban condition as its premise and its provocation, this thesis investigates architecture’s role in the emergent sub-centre. It asks: what can architecture do in these urban contexts; how can architecture act upon the emergent sub-centre in a critical, catalytic fashion? Identifying this volatile condition as both an opportunity for architectural experimentation and a need for critical architectural engagement, this thesis seeks to explore the sub-centre (as an idea and actual urban context) as architecture’s project: its raison d’etre, impetus and aspiration. These inquiries are tested through design-led research: an initial design question provoking further, broader discursive research (and indeed, seeking broader implications). The first section is a site-specific, design for Sumner, Christchurch. Titled ‘An Agora Anew’; this project - both in conception and outcome - is a speculative response to a specific sub-centre condition. The second section ‘The Sub-centre as Architecture’s Project’ explores the ideas provoked by the design project within a discursive framework. Firstly it identifies the sub-centre as a context in desperate need of architectural attention (why architecture?); secondly, it negotiates a possible agenda for architecture in this context through terms of engagement that are formal, critical and opportunistic (how architecture?): enabling it to take a position on and in the sub-centre. Lastly, a critical exegesis positions the design in regards to the broader discursive debate: critiquing it an architectural project predicated upon the idea of the sub-centre. The implications of this design-led thesis are twofold: firstly, for architecture’s role in the sub-centre (especially to Christchurch); secondly for the possibilities of architecture’s productive engagement with the city (largely through architectural form), more generally. In a century where radical, new urban contexts (of which the sub-centre is just one) are commonplace, this type of thinking – what can architecture do in the city? - is imperative.
Capacity design and hierarchy of strength philosophies at the base of modern seismic codes allow inelastic response in case of severe earthquakes and thus, in most traditional systems, damage develops at well-defined locations of reinforced concrete (RC) structures, known as plastic hinges. The 2010 and 2011 Christchurch earthquakes have demonstrated that this philosophy worked as expected. Plastic hinges formed in beams, in coupling beams and at the base of columns and walls. Structures were damaged permanently, but did not collapse. The 2010 and 2011 Christchurch earthquakes also highlighted a critical issue: the reparability of damaged buildings. No methodologies or techniques were available to estimate the level of subsequent earthquakes that RC buildings could still sustain before collapse. No repair techniques capable of restoring the initial condition of buildings were known. Finally, the cost-effectiveness of an eventual repair intervention, when compared with a new building, was unknown. These aspects, added to nuances of New Zealand building owners’ insurance coverage, encouraged the demolition of many buildings. Moreover, there was a perceived strong demand from government and industry to develop techniques for assessing damage to steel reinforcement bars embedded in cracked structural concrete elements. The most common questions were: “Have the steel bars been damaged in correspondence to the concrete cracks?”, “How much plastic deformation have the steel bars undergone?”, and “What is the residual strain capacity of the damaged bars?” Minimally invasive techniques capable of quantifying the level and extent of plastic deformation and residual strain capacity are not yet available. Although some studies had been recently conducted, a validated method is yet to be widely accepted. In this thesis, a least-invasive method for the damage-assessment of steel reinforcement is developed. Based on the information obtained from hardness testing and a single tensile test, it is possible to estimate the mechanical properties of earthquake-damaged rebars. The reduction in the low-cycle fatigue life due to strain ageing is also quantified. The proposed damage assessment methodology is based on empirical relationships between hardness and strain and residual strain capacity. If damage is suspected from in situ measurements, visual inspection or computer analysis, a bar may be removed and more accurate hardness measurements can be obtained using the lab-based Vickers hardness methodology. The Vickers hardness profile of damaged bars is then compared with calibration curves (Vickers hardness versus strain and residual strain capacity) previously developed for similar steel reinforcement bars extracted from undamaged locations. Experimental tests demonstrated that the time- and temperature-dependent strain-ageing phenomenon causes changes in the mechanical properties of plastically deformed steels. In particular, yield strength and hardness increases, whereas ductility decreases. The changes in mechanical properties are quantified and their implications on the hardness method are highlighted. Low-cycle fatigue (LCF) failures of steel reinforcing bars have been observed in laboratory testing and post-earthquake damage inspections. Often, failure might not occur during a first seismic event. However, damage is accumulated and the remaining fatigue life is reduced. Failure might therefore occur in a subsequent seismic event. Although numerous studies exist on the LCF behaviour of steel rebars, no studies had been conducted on the strain-ageing effects on the remaining fatigue life. In this thesis, the reduction in fatigue life due to this phenomenon is determined through a number of experimental tests.
The Leader Fault was one of at least 17 faults that ruptured the ground surface across the northeastern South Island of New Zealand during the Mw 7.8 2016 Kaikōura Earthquake. The southern ~6 km of the Leader Fault, here referred to as the South Leader Fault (SLF), ruptured the North Canterbury (tectonic) Domain and is the primary focus of this study. The main objective of the thesis is to understand the key factors that contributed to the geometry and kinematics of the 2016 SLF rupture and its intersection with The Humps Fault (HF). This thesis employs a combination of techniques to achieve the primary objective, including detailed mapping of the bedrock geology, geomorphology and 2016 rupture, measurement of 2016 ground surface displacements, kinematic analysis of slip vectors from the earthquake, and logging of a single natural exposure across a 2016 rupture that was treated as a paleoseismic trench. The resulting datasets were collected in the field, from terrestrial LiDAR and InSAR imagery, and from historical (pre-earthquake) aerial photographs for a ~11 km2 study area. Surface ruptures in the study area are a miniature version of the entire rupture from the earthquake; they are geometrically and kinematically complex, with many individual and discontinuous segments of varying orientations and slip senses which are distributed across a zone up to ~3.5 km wide. Despite this variability, three main groups of ruptures have been identified. These are: 1) NE-SW striking, shallow to moderate dipping (25-45°W) faults that are approximately parallel to Cenozoic bedding with mainly reverse dip-slip and, and for the purposes of this thesis, are considered to be part of the SLF. 2) N-S striking, steeply dipping (~85°E) oblique sinistral faults that are up to the west and part of the SLF. 3) E-NE striking, moderate to steeply dipping (45-68°N) dextral reverse faults which are part of the HF. Bedding-parallel faults are interpreted to be flexural slip structures formed during folding of the near-surface Cenozoic strata, while the steeply dipping SLF ruptured a pre-existing bedrock fault which has little topographic expression. Groups 1 and 2 faults were both locally used for gravitational failure during the earthquake. Despite this non-tectonic fault movement, the slip vectors for faults that ruptured during the earthquake are broadly consistent with NCD tectonics and the regional ~100-120° trend of the principal horizontal stress/strain axes. Previous earthquake activity on the SLF is required by its displacement of Cenozoic formations but Late Quaternary slip on the fault prior to 2016 is neither supported by pre-existing fault scarps nor by changes in topography across the fault. By contrast, at least two earthquakes (including 2016) appear to have ruptured the HF from the mid Holocene, consistent with recurrence intervals of no more than ~7 kyr, and with preliminary observations from trenches on the fault farther to the west. The disparity in paleoearthquake records of the two faults suggests that they typically do not rupture together, thus it is concluded that the HF-SLF rupture pattern observed in the Kaikōura Earthquake rarely occurs in a single earthquake.
“much of what we know about leadership is today redundant because it is literally designed for a different operating model, a different context, a different time” (Pascale, Sternin, & Sternin, p. 4). This thesis describes a project that was designed with a focus on exploring ways to enhance leadership capacity in non-government organisations operating in Christchurch, New Zealand. It included 20 CEOs, directors and managers from organisations that cover a range of settings, including education, recreation, and residential and community therapeutic support; all working with adolescents. The project involved the creation of a peer-supported professional learning community that operated for 14 months; the design and facilitation of which was informed by the Appreciative Inquiry principles of positive focus and collaboration. At the completion of the research project in February 2010, the leaders decided to continue their collective processes as a self-managing and sustaining professional network that has grown and in 2014 is still flourishing under the title LYNGO (Leaders of Youth focussed NGOs). Two compelling findings emerged from this research project. The first of these relates to efficacy of a complexity thinking framework to inform the actions of these leaders. The leaders in this project described the complexity thinking framework as the most relevant, resonant and dynamic approach that they encountered throughout the research project. As such this thesis explores this complexity thinking informed leadership in detail as the leaders participating in this project believed it offers an opportune alternative to more traditional forms of positional leadership and organisational approaches. This exploration is more than simply a rationale for complexity thinking but an iterative in-depth exploration of ‘complexity leadership in action’ which in Chapter 6 elaborates on detailed leadership tools and frameworks for creating the conditions for self-organisation and emergence. The second compelling finding relates to efficacy of Appreciative Inquiry as an emergent research and development process for leadership learning. In particular the adoption of two key principles; positive focus and inclusivity were beneficial in guiding the responsive leadership learning process that resulted in a professional learning community that exhibited high engagement and sustainability. Additionally, the findings suggest that complexity thinking not only acts as a contemporary framework for adaptive leadership of organisations as stated above; but that complexity thinking has much to offer as a framework for understanding leadership development processes through the application of Appreciative Inquiry (AI)-based principles. A consideration of the components associated with complexity thinking has promise for innovation and creativity in the development of leaders and also in the creation of networks of learning. This thesis concludes by suggesting that leaders focus on creating hybrid organisations, ones which leverage the strengths (and minimise the limitations) of self-organising complexity-informed organisational processes, while at the same time retaining many of the strengths of more traditional organisational management structures. This approach is applied anecdotally to the place where this study was situated: the post-earthquake recovery of Christchurch, New Zealand.