During the 2010/2011 Canterbury earthquakes, Reinforced Concrete Frame with Masonry Infill (RCFMI) buildings were subjected to significant lateral loads. A survey conducted by Christchurch City Council (CCC) and the Canterbury Earthquake Recovery Authority (CERA) documented 10,777 damaged buildings, which included building characteristics (building address, the number of storeys, the year of construction, and building use) and post-earthquake damage observations (building safety information, observed damage, level of damage, and current state of the buildings). This data was merged into the Canterbury Earthquake Building Assessment (CEBA) database and was utilised to generate empirical fragility curves using the lognormal distribution method. The proposed fragility curves were expected to provide a reliable estimation of the mean vulnerability for commercial RCFMI buildings in the region. http://www.13thcms.com/wp-content/uploads/2017/05/Symposium-Info-and-Presentation-Schedule.pdf VoR - Version of Record
A photograph of the photocopy template for the Christchurch City Council's yellow sticker. The sticker was used by the Civil Defence after the 2010 and 2011 earthquakes to indicate that a building had been inspected and that structural damage or other safety hazards had been found. The sticker states that there should be no entry to the building, 'except on essential business'. It also states that 'earthquake aftershocks present danger' and that people who enter must do so at their own risk.
One landscape colour digital photograph taken on 13 May 2011 looking northwest from the Gaol Steps. In the foreground is the edge of the Lyttelton Rose Garden, the safety fencing around the Upham Clock is visible. Below this is the intersection of Winchester and Oxford Streets. Prominent in the mid ground are the Catholic Church of St Joseph the...
One landscape colour digital photograph taken on 9 March 2011 showing a string of handmade bunting made from a cream woollen blanket with "KIA KAHA LYTTELTON" stitched onto the pennants in red wool. The Fence was located around the street frontages of the Royal Hotel on the Corner of Norwich Quay and Canterbury Street. Also visible in the photo...
Implementing seismic risk mitigation is a major challenge in many earthquake prone regions. The objective of this research is to investigate how property investment market practices can be used to enhance building owners’ decisions to improve seismic performance of earthquake prone buildings (EPBs). A case study method adopted, revealed the impacts of the property market stakeholders’ practices on seismic retrofit decisions. The findings from this research provide significant new insights on how property market-based incentives such as such as mandatory disclosure of seismic risks in all transactions in the property market, effective awareness seismic risk program and a unified earthquake safety assessment information system, can be used to enhance EPBs owners seismic retrofit decisions. These market-based incentives offer compelling reasons for the different property market stakeholders and the public at large to retain, care, invest, and act responsibly to rehabilitate EPBs. The findings suggest need for stakeholders involved in property investment and retrofit decisions to work together to foster seismic rehabilitation of EPBs.
A photograph of a notice on the fence of a house on Marine Parade in North Brighton. The notice reads, "Public Notice, EQC and other parties have declared this property stable and of no threat to the safety of any other parties. Dated 15/03/11. Please keep out".
A photograph of a notice on the window of a house on Marine Parade in North Brighton. The notice reads, "Public Notice, EQC and other parties have declared this property stable and of no threat to the safety of any other parties. Dated 15/03/11. Please keep out".
This article presents a subset of findings from a larger mixed methods CEISMIC1 funded study of twenty teachers’ earthquake experiences and post-earthquake adjustment eighteen months after a fatal earthquake struck Christchurch New Zealand, in the middle of a school day (Geonet Science, 2011; O’Toole & Friesen, 2016). This earthquake was a significant national and personal disaster with teachers’ emotional self-management as first responders being crucial to the students’ immediate safety (O’Toole & Friesen, 2016). At the beginning of their semi-structured interviews conducted eighteen months later, the teachers shared their earthquake stories (O’Toole & Friesen, 2016). They recalled the moment it struck in vivid detail, describing their experiences in terms of what they saw (destruction), heard (sonic boom, screaming children) and felt (fright and fear) as though they were back in that moment similar to flashbulb memory (Brown & Kulik, 1977). Their memories of the early aftermath were similarly vivid (Rubin & Kozin, 1984). This article focuses on how the mood meter (Brackett & Kremenitzer, 2011) was then used (with permission) to further explore the teachers’ perceived affect to enlighten their lived experiences.
It is not a matter of if a major earthquake will happen in New Zealand, it is when. Earthquakes wreak havoc, cut off power and water supply, lines of communication, sewer, supply chains, and transport infrastructure. People get injured and whole communities can get cut off the rest of the country for extended periods of time. Countries taking measures to increase the population's preparedness tend to suffer less severe consequences than those that do not. Disaster management authorities deliver comprehensive instructions and preparation guidance, yet communities remain grossly underprepared. There are multiple factors that influence motivation for preparedness. Personal experience is one of the most significant factors that influence preparedness motivation. Not many people will experience a severe and damaging earthquake in their lifetime. A serious game (SG) that is a computer simulation of an earthquake is a tool that can let participants experience the earthquake and its aftermath from the safety of their computer. The main result of this research is a positive answer to the question: Can a serious game motivate people to prepare for earthquakes at least just as good as a personal experience of at least a moderate earthquake? There are different levels of immersion this serious game can be implemented at. In this thesis the same earthquake experience scenario – SG “ShakeUp” is implemented as a desktop application and a virtual reality (VR) application. A user study is conducted with the aim of comparing the motivation level achieved by the two versions of the SG “ShakeUp”. In this study no benefits of using VR over traditional desktop application were found: participants trying both versions of the SG “ShakeUp” reported similar levels of motivation to prepare for earthquakes immediately after the experiment. This means that both versions of the experience were equally effective in motivating participants to prepare for earthquakes. An additional benefit of this result is that the cheaper and easier to deliver desktop version can be widely used in various education campaigns. Participants reported being more motivated to prepare for earthquakes by either version of the SG “ShakeUp” than by any other contributing factor, including their previous earthquake experience or participation in a public education campaign. Both versions of the SG “ShakeUp” can successfully overcome personal bias, unrealistic optimism, pessimism, lack of perceived control over one’s earthquake preparation actions, fatalism, and sense of helplessness in the face of the earthquakes and motivate the individual to prepare for earthquakes. Participants without the prior earthquake experience benefit most from the SG “ShakeUp” regardless of the version tried, compared to the participants who had experienced an earthquake: significantly more of them will reconsider their current level of earthquake preparedness; about 24% more of them attribute their increased level of motivation to prepare for earthquakes to the SG “ShakeUp”. For every earthquake preparation action there is about 25% more people who felt motivated to do it after trying the SG “ShakeUp” than those who have done this preparation action before the experiment. After trying either version of the SG “ShakeUp”, people who live in a free standing house and those who live in a rental property reported highest levels of intent to carry on with the preparation actions. The proposed application prototype has been discussed with the University of Canterbury Earthquake Centre and received very positive feedback as having potential for practical use by various disaster management authorities and training institutions. The research shows that the SG “ShakeUp” motivates people to prepare for earthquakes as good as a personal earthquake experience and can be successfully used in various education campaigns.
Very little research exists on total house seismic performance. This testing programme provides stiffness and response data for five houses of varying ages including contributions of non-structural elements. These light timber framed houses in Christchurch, New Zealand had minor earthquake damage from the 2011 earthquakes and were lateral load tested on site to determine their strength and stiffness, and preliminary damage thresholds. Dynamic characteristics were also investigated. Various loading schemes were utilised including quasi-static loading above the foundation, unidirectional loading through the floor diaphragm, cyclic quasi-static loading and snapback tests. Dynamic analysis on two houses provided the seismic safety levels of post-quake houses with respect to local hazard levels. Compared with New Zealand Building Standards all the tested houses had an excess of strength, damage is a significant consideration in earthquake resilience and was observed in all of the houses. A full size house laboratory test is proposed.
Photograph captioned by Fairfax, "Chris Lin and his wife Caleen Xue at the door of their cool store safe where they slept for three weeks after the 4 September earthquake to guard what was left of their stock, while their teenage children rented a single room in a house up the road for their safety".
The number of speed camera tickets being issued skyrockets, police say it's about road safety, the AA's not so sure. Crisis talks in Europe over the Greek debt crisis... and its impact on the Eurozone and there were angry scenes at a Christchurch meeting last night as residents tried to stop a dump for earthquake debris being built in their suburb.
Photograph captioned by Fairfax, "Chris Lin and his wife Caleen Xue at the door of their cool store safe where they slept for three weeks after the 4 September earthquake to guard what was left of their stock, while their teenage children rented a single room in a house up the road for their safety".
An elderly Christchurch couple are crying foul over EQC's site visit policy under alert level two. EQC says the measures, outlined in emails to clients, are crucial for staff and customer safety. But John and Frances van Petegem, who have been waiting years to have botched earthquake repairs put right, say EQC's rules are causing further delays and stress. Nick Truebridge has the story.
During the Christchurch earthquake of February 2011, several midrise reinforced concrete masonry (RCM) buildings showed performance levels that fall in the range of life safety to near collapse. A case study of one of these buildings, a six-story RCM building deemed to have reached the near collapse performance level, is presented in this paper. The RCM walls on the second floor failed due to toe crushing, reducing the building's lateral resistance in the east–west direction. A three-dimensional (3-D) nonlinear dynamic analysis was conducted to simulate the development of the governing failure mechanism. Analysis results showed that the walls that were damaged were subjected to large compression loads during the earthquake, which caused an increase in their in-plane lateral strength but reduced their ductility capacity. After toe crushing failure, axial instability of the model was prevented by a redistribution of gravity loads. VoR - Version of Record
Depicts huge elderly woman with 'CERA' on her dress scolding smaller adult dressed as schoolboy near bustop with sign 'CBD red zone tours' Text reads 'And don't talk to strangers and don't cross the road and remember to eat your lunch..' Context: After the 22 Feburary 2011 earthquake in Christchurch, the central business district (CBD) was marked as a red zone. Red zone areas were deemed unsuitable for habitation due to significant damage and at high risk of further damage from low levels of earth shaking. CERA (Christchurch Earthquake Recovery Authority) ran public bus tours of the Christchurch CBD from November to December 2011. For safety reasons the public was not allowed off the buses as it was a dangerous and active demolition site. Quantity: 1 digital cartoon(s).
One landscape colour digital photograph taken on 28 April 2012 looking south from Cunningham Terrace, Lyttelton. The photograph shows a homemade sign with the text "How Happy are Those Whose Walls Already Rise. Virgil" . The sign is attached to a temporary safety fence on top of a retaining wall awaiting repair. Quoted author The retaining wall...
The focus of the study presented herein is an assessment of the relative efficacy of recent Cone Penetration Test (CPT) and small strain shear wave velocity (Vs) based variants of the simplified procedure. Towards this end Receiver Operating Characteristic (ROC) analyses were performed on the CPT- and Vs-based procedures using the field case history databases from which the respective procedures were developed. The ROC analyses show that Factors of Safety (FS) against liquefaction computed using the most recent Vs-based simplified procedure is better able to separate the “liquefaction” from the “no liquefaction” case histories in the Vs liquefaction database than the CPT-based procedure is able to separate the “liquefaction” from the “no liquefaction” case histories in the CPT liquefaction database. However, this finding somewhat contradicts the assessed predictive capabilities of the CPT- and Vs-based procedures as quantified using select, high quality liquefaction case histories from the 20102011 Canterbury, New Zealand, Earthquake Sequence (CES), wherein the CPT-based procedure was found to yield more accurate predictions. The dichotomy of these findings may result from the fact that different liquefaction field case history databases were used in the respective ROC analyses for Vs and CPT, while the same case histories were used to evaluate both the CPT- and Vs-based procedures.
This study explored the experiences of 10 leaders in their intentional six-month implementation, during the 2010-2011Christchurch earthquakes, of an adapted positive leadership model. The study concluded that the combination of strategies in the model provided psychological and participative safety for leaders to learn and to apply new ways of working. Contrary to other studies on natural disaster, workplace performance increased and absenteeism decreased. The research contributes new knowledge to the positive leadership literature and new understanding, from the perspective of leaders, of the challenges of leading in a workplace environment of ongoing natural disaster events.
NUK KORAKO to the Minister of Finance: How does New Zealand’s growing economy and the Government’s commitment to responsible fiscal management mean New Zealand is well-placed to respond to the Kaikōura earthquake? ANDREW LITTLE to the Prime Minister: Has he spoken to relevant Ministers about the lessons learned from the Canterbury earthquakes to ensure people affected by the recent earthquakes have an easier and faster recovery? STUART SMITH to the Minister of Civil Defence: What update can he provide about the Government’s response to the Kaikōura earthquake? RON MARK to the Prime Minister: Can he update the House on the situation in quake-affected areas in the South Island? JAMES SHAW to the Prime Minister: Is he committed to all his Government’s policies? Hon ANNETTE KING to the Minister of Health: Does he stand by his statement that following the Valentine’s Day earthquake this year in Canterbury, “it was timely to review whether any additional mental health and wellbeing support was needed”; if so, will he consider reviewing whether any additional support is needed for Canterbury and Nelson-Marlborough district health boards as a result of the recent earthquakes? JACQUI DEAN to the Minister of Transport: What updates has he received on damage to transport infrastructure following the Kaikōura earthquake? JAN LOGIE to the Minister for Workplace Relations and Safety: What is his response to yesterday’s call from members of the Joint Working Group on Pay Equity Principles for the Government to “immediately right this historic wrong and implement the JWG principles”? JACINDA ARDERN to the Minister for Economic Development: When is he likely to announce a recovery or support package for small businesses in earthquake-affected areas? KANWALJIT SINGH BAKSHI to the Minister of Police: What are New Zealand Police doing to support the Kaikōura community? CHRIS HIPKINS to the Minister of Education: When did she first discuss the potential impact of Monday’s 7.5 earthquake on NCEA and Scholarship exams with the New Zealand Qualifications Authority? IAN McKELVIE to the Minister for Primary Industries: What recent reports has he received on the impact of the recent earthquakes on the primary sector?
Refers to the controversy over the decision to demolish the Christchurch Cathedral which was severely damaged in the earthquakes of 2010 and 2011. The Anglican Bishop of Christchurch Victoria Mathews says the decision to demolish the cathedral was reached through prayer, great deliberation and with the utmost concern for safety. The Bishop says a number of options were considered before deciding to bring the walls down but the turning point was 23 December 2011, when a series of strong quakes rocked the city. At that stage the Canterbury Earthquake Authority approached the church. "CERA told us that our plans for making safe and retrieving, and then stepping back and making further decisions were no longer adequate." Christchurch City council announced their support on Twitter this afternoon (17 May 2012) - tweeting an endorsement to an immediate pause on demolition of the Cathedral to enable deeper and more open consideration of options. Quantity: 1 digital cartoon(s).
The sequence of earthquakes that has greatly affected Christchurch and Canterbury since September 2010 has again demonstrated the need for seismic retrofit of heritage unreinforced masonry buildings. Commencing in April 2011, the damage to unreinforced stone masonry buildings in Christchurch was assessed and recorded with the primary objective being to document the seismic performance of these structures, recognising that they constitute an important component of New Zealand’s heritage architecture. A damage statistics database was compiled by combining the results of safety evaluation placarding and post-earthquake inspections, and it was determined that the damage observed was consistent with observations previously made on the seismic performance of stone masonry structures in large earthquakes. Details are also given on typical building characteristics and on failure modes observed. Suggestions on appropriate seismic retrofit and remediation techniques are presented, in relation also to strengthening interventions that are typical for similar unreinforced stone masonry structures in Europe.
Christchurch earthquake events have raised questions on the adequacy of performance-based provisions in the current national building code. At present, in the building code the performance objectives are expressed in terms of safety and health criteria that could affect building occupants. In general, under the high intensity Christchurch events, buildings performed well in terms of life-safety (with a few exceptions) and it proved that the design practices adopted for those buildings could meet the performance objectives set by the building code. However, the damage incurred in those buildings resulted in unacceptably high economic loss. It is timely and necessary to revisit the objectives towards building performance in the building code and to include provisions for reducing economic implications in addition to the current requirements. Based on the observed performance of some buildings, a few specific issues in the current design practices that could have contributed to extensive damage have been identified and recommended for further research leading towards improved performance of structures. In particular, efforts towards innovative design/construction solutions with low-damage concepts are encouraged. New Zealand has been one of the leading countries in developing many innovative technologies. However, such technically advanced research findings usually face challenges towards implementation. Some of the reasons include: (i) lack of policy requirements; (iii) absence of demonstrated performance of new innovations to convince stakeholders; and (iv) non-existence of design guidelines. Such barriers significantly affect implementation of low damage construction and possible strategies to overcome those issues are discussed in this paper.
The majority of current procedures used to deduce liquefaction potential of soils rely on empirical methods. These methods have been proven to work in the past, but these methods are known to overestimate the liquefaction potential in certain regions of Christchurch due to a whole range of factors, and the theoretical basis behind these methods cannot be explained scientifically. Critical state soil mechanics theory was chosen to provide an explanation for the soil's behaviour during the undrained shearing. Soils from two sites in Christchurch were characterised at regular intervals for the critical layers and tested for the critical state lines (CSL). Various models and relationships were then used to predict the CSL and compared with the actual CSL. However none of the methods used managed to predict the CSL accurately, and a separate Christchurch exclusive relationship was proposed. The resultant state parameter values could be obtained from shear-wave velocity plots and were then developed into cyclic resistance ratios (CRR). These were subsequently compared with cyclic stress ratios (CSR) from recent Christchurch earthquakes to obtain the factor of safety. This CSL-based approach was compared with other empirical methods and was shown to yield a favourable relationship with visual observations at the sites' locations following the earthquake.
The Cranmer Court building, on the corner of Kilmore and Montreal Streets, after the 22 February 2011 earthquake. Large pieces of the building have collapsed, including the octagonal corner section that housed Plato Creative from March 2008 to November 2009. Masonry has fallen onto the footpath and road, and the site has been enclosed in a safety fence to keep people away. The whitewashed interior walls of one of the apartments can be seen.
In practice, several competing liquefaction evaluation procedures (LEPs) are used to compute factors of safety against soil liquefaction, often for use within a liquefaction potential index (LPI) framework to assess liquefaction hazard. At present, the influence of the selected LEP on the accuracy of LPI hazard assessment is unknown, and the need for LEP-specific calibrations of the LPI hazard scale has never been thoroughly investigated. Therefore, the aim of this study is to assess the efficacy of three CPT-based LEPs from the literature, operating within the LPI framework, for predicting the severity of liquefaction manifestation. Utilising more than 7000 liquefaction case studies from the 2010–2011 Canterbury (NZ) earthquake sequence, this study found that: (a) the relationship between liquefaction manifestation severity and computed LPI values is LEP-specific; (b) using a calibrated, LEP-specific hazard scale, the performance of the LPI models is essentially equivalent; and (c) the existing LPI framework has inherent limitations, resulting in inconsistent severity predictions against field observations for certain soil profiles, regardless of which LEP is used. It is unlikely that revisions of the LEPs will completely resolve these erroneous assessments. Rather, a revised index which more adequately accounts for the mechanics of liquefaction manifestation is needed.
There is very little research on total house strength that includes contributions of non-structural elements. This testing programme provides inclusive stiffness and response data for five houses of varying ages. These light timber framed houses in Christchurch, New Zealand had minor earthquake damage from the 2011 earthquakes and were lateral load tested on site to determine their strength and/or stiffness, and to identify damage thresholds. Dynamic characteristics including natural periods, which ranged from 0.14 to 0.29s were also investigated. Two houses were quasi-statically loaded up to approximately 130kN above the foundation in one direction. Another unidirectional test was undertaken on a slab-on-grade two-storey house, which was also snapback tested. Two other houses were tested using cyclic quasi-static loading, and between cycles snapback tests were undertaken to identify the natural period of each house, including foundation and damage effects. A more detailed dynamic analysis on one of the houses provided important information on seismic safety levels of post-quake houses with respect to different hazard levels in the Christchurch area. While compared to New Zealand Building Standards all tested houses had an excess of strength, damage is a significant consideration in earthquake resilience and was observed in all of the houses. http://www.aees.org.au/downloads/conference-papers/2015-2/
In the last century, seismic design has undergone significant advancements. Starting from the initial concept of designing structures to perform elastically during an earthquake, the modern seismic design philosophy allows structures to respond to ground excitations in an inelastic manner, thereby allowing damage in earthquakes that are significantly less intense than the largest possible ground motion at the site of the structure. Current performance-based multi-objective seismic design methods aim to ensure life-safety in large and rare earthquakes, and to limit structural damage in frequent and moderate earthquakes. As a result, not many recently built buildings have collapsed and very few people have been killed in 21st century buildings even in large earthquakes. Nevertheless, the financial losses to the community arising from damage and downtime in these earthquakes have been unacceptably high (for example; reported to be in excess of 40 billion dollars in the recent Canterbury earthquakes). In the aftermath of the huge financial losses incurred in recent earthquakes, public has unabashedly shown their dissatisfaction over the seismic performance of the built infrastructure. As the current capacity design based seismic design approach relies on inelastic response (i.e. ductility) in pre-identified plastic hinges, it encourages structures to damage (and inadvertently to incur loss in the form of repair and downtime). It has now been widely accepted that while designing ductile structural systems according to the modern seismic design concept can largely ensure life-safety during earthquakes, this also causes buildings to undergo substantial damage (and significant financial loss) in moderate earthquakes. In a quest to match the seismic design objectives with public expectations, researchers are exploring how financial loss can be brought into the decision making process of seismic design. This has facilitated conceptual development of loss optimisation seismic design (LOSD), which involves estimating likely financial losses in design level earthquakes and comparing against acceptable levels of loss to make design decisions (Dhakal 2010a). Adoption of loss based approach in seismic design standards will be a big paradigm shift in earthquake engineering, but it is still a long term dream as the quantification of the interrelationships between earthquake intensity, engineering demand parameters, damage measures, and different forms of losses for different types of buildings (and more importantly the simplification of the interrelationship into design friendly forms) will require a long time. Dissecting the cost of modern buildings suggests that the structural components constitute only a minor portion of the total building cost (Taghavi and Miranda 2003). Moreover, recent research on seismic loss assessment has shown that the damage to non-structural elements and building contents contribute dominantly to the total building loss (Bradley et. al. 2009). In an earthquake, buildings can incur losses of three different forms (damage, downtime, and death/injury commonly referred as 3Ds); but all three forms of seismic loss can be expressed in terms of dollars. It is also obvious that the latter two loss forms (i.e. downtime and death/injury) are related to the extent of damage; which, in a building, will not just be constrained to the load bearing (i.e. structural) elements. As observed in recent earthquakes, even the secondary building components (such as ceilings, partitions, facades, windows parapets, chimneys, canopies) and contents can undergo substantial damage, which can lead to all three forms of loss (Dhakal 2010b). Hence, if financial losses are to be minimised during earthquakes, not only the structural systems, but also the non-structural elements (such as partitions, ceilings, glazing, windows etc.) should be designed for earthquake resistance, and valuable contents should be protected against damage during earthquakes. Several innovative building technologies have been (and are being) developed to reduce building damage during earthquakes (Buchanan et. al. 2011). Most of these developments are aimed at reducing damage to the buildings’ structural systems without due attention to their effects on non-structural systems and building contents. For example, the PRESSS system or Damage Avoidance Design concept aims to enable a building’s structural system to meet the required displacement demand by rocking without the structural elements having to deform inelastically; thereby avoiding damage to these elements. However, as this concept does not necessarily reduce the interstory drift or floor acceleration demands, the damage to non-structural elements and contents can still be high. Similarly, the concept of externally bracing/damping building frames reduces the drift demand (and consequently reduces the structural damage and drift sensitive non-structural damage). Nevertheless, the acceleration sensitive non-structural elements and contents will still be very vulnerable to damage as the floor accelerations are not reduced (arguably increased). Therefore, these concepts may not be able to substantially reduce the total financial losses in all types of buildings. Among the emerging building technologies, base isolation looks very promising as it seems to reduce both inter-storey drifts and floor accelerations, thereby reducing the damage to the structural/non-structural components of a building and its contents. Undoubtedly, a base isolated building will incur substantially reduced loss of all three forms (dollars, downtime, death/injury), even during severe earthquakes. However, base isolating a building or applying any other beneficial technology may incur additional initial costs. In order to provide incentives for builders/owners to adopt these loss-minimising technologies, real-estate and insurance industries will have to acknowledge the reduced risk posed by (and enhanced resilience of) such buildings in setting their rental/sale prices and insurance premiums.
Rapid, reliable information on earthquake-affected structures' current damage/health conditions and predicting what would happen to these structures under future seismic events play a vital role in accelerating post-event evaluations, leading to optimized on-time decisions. Such rapid and informative post-event evaluations are crucial for earthquake-prone areas, where each earthquake can potentially trigger a series of significant aftershocks, endangering the community's health and wealth by further damaging the already-affected structures. Such reliable post-earthquake evaluations can provide information to decide whether an affected structure is safe to stay in operation, thus saving many lives. Furthermore, they can lead to more optimal recovery plans, thus saving costs and time. The inherent deficiency of visual-based post-earthquake evaluations and the importance of structural health monitoring (SHM) methods and SHM instrumentation have been highlighted within this thesis, using two earthquake-affected structures in New Zealand: 1) the Canterbury Television (CTV) building, Christchurch; 2) the Bank of New Zealand (BNZ) building, Wellington. For the first time, this thesis verifies the theoretically- and experimentally validated hysteresis loop analysis (HLA) SHM method for the real-world instrumented structure of the BNZ building, which was damaged severely due to three earthquakes. Results indicate the HLA-SHM method can accurately estimate elastic stiffness degradation for this reinforced concrete (RC) pinched structure across the three earthquakes, which remained unseen until after the third seismic event. Furthermore, the HLA results help investigate the pinching effects on the BNZ building's seismic response. This thesis introduces a novel digital clone modelling method based on the robust and accurate SHM results delivered by the HLA method for physical parameters of the monitored structure and basis functions predicting the changes of these physical parameters due to future earthquake excitations. Contrary to artificial intelligence (AI) based predictive methods with black-box designs, the proposed predictive method is entirely mechanics-based with an explicitly-understandable design, making them more trusted and explicable to stakeholders engaging in post-earthquake evaluations, such as building owners and insurance firms. The proposed digital clone modelling framework is validated using the BNZ building and an experimental RC test structure damaged severely due to three successive shake-table excitations. In both structures, structural damage intensifies the pinching effects in hysteresis responses. Results show the basis functions identified from the HLA-SHM results for both structures under Event 1 can online estimate structural damage due to subsequent Events 2-3 from the measured structural responses, making them valuable tool for rapid warning systems. Moreover, the digital twins derived for these two structures under Event 1 can successfully predict structural responses and damage under Events 2-3, which can be integrated with the incremental dynamic analysis (IDA) method to assess structural collapse and its financial risks. Furthermore, it enables multi-step IDA to evaluate earthquake series' impacts on structures. Overall, this thesis develops an efficient method for providing reliable information on earthquake-affected structures' current and future status during or immediately after an earthquake, considerably guaranteeing safety. Significant validation is implemented against both experimental and real data of RC structures, which thus clearly indicate the accurate predictive performance of this HLA-based method.
Text across the top of the cartoon reads 'You know you live in Christchurch when...' Six cameos follow reading 'You can stir a cup of coffee without a spoon' - a cup of coffee is shaken; 'after 30 years you finally know your neighbours' - a group of people get to know one another; 'the latest fitness craze is sandba' - a couple shovel a heap of liquefaction to music from their transistor; 'everyone gets to drive a slalom' - someone weaves along a road avoiding cracks and mud in their car; 'there's a craze in "unique garden features"' - a longdrop has been dug in the garden; and lastly 'you have tea under a doorframe' - a couple eats and drinks under a doorframe for safety. Context - the Christchurch earthquake of 22 February 2011. Published in The Press Quantity: 1 digital cartoon(s).