An artist's impression of the LUXCITY event. The image depicts installations on Gloucester and Colombo Streets. Student: Erica Austin
An artist's impression of the installation 'In Your Face', created as part of the LUXCITY event. Tutor: Fraser Horton
An artist's impression of the installation 'Atmosphere', created as part of the LUXCITY event. Tutor: Sue Hillery
A photograph of children cycling on the Fulton Hogan BMX Pump Track.
A photograph of a sign describing the Fulton Hogan BMX Pump Track.
A photograph of a volunteer wearing an In Our Backyard competition shirt. The shirt lists supporters and sponsors of the competition.
An artist's impression of the installation 'In Your Face', created as part of the LUXCITY event. Tutor: Fraser Horton
This paper outlines the deconstruction, redesign and reconstruction of a 2 storey timber building at the University of Canterbury, in Christchurch, New Zealand. The building consists of post tensioned timber frames and walls for lateral and gravity resistance, and timber concrete composite flooring. Originally a test specimen, the structure was subjected to extreme lateral displacements in the University structural testing laboratory. This large scale test of the structural form showed that post tensioned timber can withstand high levels of drift with little to no structural damage in addition to displaying full recentering characteristics with no residual displacements, a significant contributor to post earthquake cost. The building subsequently has been dismantled and reconstructed as offices for the Structural Timber Innovation Company (STIC). In doing this over 90% of the materials have been recycled which further enhances the sustainability of this construction system. The paper outlines the necessary steps to convert the structure from a test specimen into a functioning office building with minimal wastage and sufficient seismic resistance. The feasibility of recycling the structural system is examined using the key indicators of cost and time.
A PDF copy of pages 290-291 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'Victoria Green'. Photos with permission from Greening the Rubble
The UC CEISMIC Canterbury Earthquakes Digital Archive was built following the devastating earthquakes that hit the Canterbury region in the South Island of New Zealand from 2010 – 2012. 185 people were killed in the 6.3 magnitude earthquake of February 22nd 2011, thousands of homes and businesses were destroyed, and the local community endured over 10,000 aftershocks. The program aims to document and protect the social, cultural, and intellectual legacy of the Canterbury community for the purposes of memorialization and enabling research. The nationally federated archive currently stores 75,000 items, ranging from audio and video interviews to images and official reports. Tens of thousands more items await ingestion. Significant lessons have been learned about data integration in post-disaster contexts, including but not limited to technical architecture, governance, ingestion process, and human ethics. The archive represents a model for future resilience-oriented data integration and preservation products.
None
Following the 2010-2011 earthquakes in Canterbury, New Zealand, the University of Canterbury (UC) was faced with the need to respond to major challenges in its teaching and learning environment. With the recognition of education as a key component to the recovery of the Canterbury region, UC developed a plan for the transformation and renewal of the campus. Central to this renewal is human capital – graduates who are distinctly resilient and broadly skilled, owing in part to their living and rebuilding through a disaster. Six desired graduate attributes have been articulated through this process: knowledge and skills of a recognized subject, critical thinking skills, the ability to interpret information from a range of sources, the ability to self-direct learning, cultural competence, and the recognition of global connections through social, ethical, and environmental values. All of these attributes may readily be identified in undergraduate geoscience field education and graduate field-based studies, and this is particularly important to highlight in a climate where the logistical and financial requirements of fieldwork are becoming a barrier to its inclusion in undergraduate curricula. Fieldwork develops discipline-specific knowledge and skills and fosters independent and critical thought. It encourages students to recognize and elaborate upon relevant information, plan ways to solve complicated problems, execute and re-evaluate these plans. These decisions are largely made by the learners, who often direct their own field experience. The latter two key graduate attributes, cultural competence and global recognition of socio-environmental values, have been explicitly addressed in field education elsewhere and there is potential to do so within the New Zealand context. These concepts are inherent to the sense of place of geoscience undergraduates and are particularly important when the field experience is viewed through the lens of landscape heritage. This work highlights the need to understand how geoscience students interact with field places, with unique implications for their cultural and socio-environmental awareness as global citizens, as well as the influence that field pedagogy has on these factors.
A photograph of the lower end of the main tube of the Townsend Telescope. The tube was crushed and bent during the 22 February 2011 earthquake.
A photograph of some of the parts of the Townsend Telescope. Many of the parts were damaged during the 22 February 2011 earthquake.
A photograph of two clock gears from the Townsend Telescope.
A photograph of the scale viewer eyepiece from the Townsend Telescope.
A photograph of the damage to the teeth of a gear from the worm gear drive of the Townsend Telescope. The gear was damaged during the 22 February 2011 earthquake.
A photograph of the declinator readout ring from the Townsend Telescope. The ring was chipped and scratched during the 22 February 2011 earthquake.
A photograph of the knurled knob from the Townsend Telescope. The teeth of the knob were damaged during the 22 February 2011 earthquake.
A photograph of a friction collar from the Townsend Telescope.
A photograph of the earthquake-damaged output shaft from the top-plate of the Townsend Telescope's clock drive. The output shaft was bent out of shape during the 22 February 2011 earthquake.
A photograph of the top cover of the clock from the Townsend Telescope. Parts of the cover were bent out of shape during the 22 February 2011 earthquake.
A photograph of a collar from the Townsend Telescope. Part of the collar was bent out of shape during the 22 February 2011 earthquake.
A photograph of a slow motion rod from the Townsend Telescope. The rod was bent out of shape during the 22 February 2011 earthquake.
A photograph of a slow motion knob and shaft from the Townsend Telescope. The knob broke off the shaft during the 22 February 2011 earthquake.
A photograph of a slow motion gear from the Townsend Telescope.
A photograph of an eyepiece clamp from the Townsend Telescope.
A photograph of a governor friction plate from the Townsend Telescope.
A photograph of a slow motion rod from the Townsend Telescope.
A photograph of a slow motion rod from the Townsend Telescope.