Search

found 4250 results

Research papers, University of Canterbury Library

This study investigates evidence for linkages and fault interactions centred on the Cust Anticline in Northwest Canterbury between Starvation Hill to the southwest and the Ashley and Loburn faults to the northeast. An integrated programme of geologic, geomorphic, paleo-seismic and geophysical analyses was undertaken owing to a lack of surface exposures and difficulty in distinguishing active tectonic features from fluvial and/or aeolian features across the low-relief Canterbury Plains. LiDAR analysis identified surface expression of several previously unrecognised active fault traces across the low-relief aggradation surfaces of the Canterbury Plains. Their presence is consistent with predictions of a fault relay exploiting the structural mesh across the region. This is characterised by interactions of northeast-striking contractional faults and a series of re-activating inherited Late Cretaceous normal faults, the latter now functioning as E–W-striking dextral transpressive faults. LiDAR also allowed for detailed analysis of the surface expression of individual faults and folds across the Cust Anticline contractional restraining bend, which is evolving as a pop-up structure within the newly established dextral shear system that is exploiting the inherited, now re-activated, basement fault zone. Paleo-seismic trenches were located on the crest of the western arm of the Cust Anticline and across a previously unrecognised E–W-striking fault trace, immediately southwest of the steeply plunging Cust Anticline termination. These studies confirmed the location and structural style of north-northeast-striking faults and an E–W-striking fault associated with the development of this structural culmination. A review of available industry seismic reflection lines emphasised the presence of a series of common structural styles having the same underlying structural drivers but with varying degrees of development and expression, both in the seismic profiles and in surface elevations across the study area. Based on LiDAR surface mapping and preliminary re-analysis of industry seismic reflection data, four fault zones are identified across the restraining bend structural culminations, which together form the proposed Oxford–Cust–Ashley Fault System. The 2010–2012 Canterbury Earthquake Sequence showed many similarities to the structural pattern established across the Oxford–Cust–Ashley Fault System, emphasising the importance of identification and characterization of presently hidden fault sources, and the understanding of fault network linkages, in order to improve constraints on earthquake source potential. Improved understanding of potentially-interactive fault sources in Northwest Canterbury, with the potential for combined initial fault rupture and spatial and temporal rupture propagation across this fault system, can be used in probabilistic seismic hazard analysis for the region, which is essential for the suitability and sustainability of future social and economic development.

Research Papers, Lincoln University

Liquefaction affects late Holocene, loose packed and water saturated sediment subjected to cyclical shear stress. Liquefaction features in the geological record are important off-fault markers that inform about the occurrence of moderate to large earthquakes (> 5 Mw). The study of contemporary liquefaction features provides a better understanding of where to find past (paleo) liquefaction features, which, if identified and dated, can provide information on the occurrence, magnitude and timing of past earthquakes. This is particularly important in areas with blind active faults. The extensive liquefaction caused by the 2010-2011 Canterbury Earthquake Sequence (CES) gave the geoscience community the opportunity to study the liquefaction process in different settings (alluvial, coastal and estuarine), investigating different aspects (e.g. geospatial correlation with landforms, thresholds for peak ground acceleration, resilience of infrastructures), and to collect a wealth geospatial dataset in the broad region of the Canterbury Plains. The research presented in this dissertation examines the sedimentary architecture of two environments, the alluvial and coastal settings, affected by liquefaction during the CES. The novel aim of this study is to investigate how landform and subsurface sedimentary architecture influence liquefaction and its surface manifestation, to provide knowledge for locating studies of paleoliquefaction in future. Two study cases documented in the alluvial setting showed that liquefaction features affected a crevasse splay and point bar ridges. However, the liquefaction source layer was linked to paleochannel floor deposits below the crevasse splay in the first case, and to the point bar deposits themselves in the second case. This research documents liquefaction features in the coastal dune system of the Canterbury Plains in detail for the first time. In the coastal dune setting the liquefiable layer is near the surface. The pore water pressure is vented easily because the coastal dune soil profile is entirely composed of non-cohesive, very well sorted sandy sediment that weakly resists disturbance from fluidised sediment under pressure. As a consequence, the liquefied flow does not need to find a specific crack through which the sediment is vented at the surface; instead, the liquefied sand finds many closely spaced conduits to vent its excess of pore water pressure. Therefore, in the coastal dune setting it is rare to observe discrete dikes (as they are defined in the alluvial setting), instead A horizon delamination (splitting) and blistering (near surface sills) are more common. The differences in styles of surface venting lead to contrasts in patterns of ejecta in the two environments. Whereas the alluvial environment is characterised by coalesced sand blows forming lineations, the coastal dune environment hosts apparently randomly distributed isolated sand blows often associated with collapse features. Amongst the techniques tested for the first time to investigate liquefaction features are: 3D GPR, which improved the accuracy of the trenching even six years after the liquefaction events; thin section analysis to investigate sediment fabric, which helped to discriminate liquefied sediment from its host sediment, and modern from paleoliquefaction features; a Random Forest classification based on the CES liquefaction map, which was used to test relationships between surface manifestation of liquefaction and topographic parameters. The results from this research will be used to target new study sites for future paleoliquefaction research and thus will improve the earthquake hazard assessment across New Zealand.

Research papers, Victoria University of Wellington

On the 22nd of February, 2011 the city of Christchurch, New Zealand was crippled by a colossal earthquake. 185 people were killed, thousands injured and what remained was a city left in destruction and ruin. Thousands of Christchurch properties and buildings were left damaged beyond repair and the rich historical architecture of the Canterbury region had suffered irreparably.  This research will conduct an investigation into whether the use of mixed reality can aid in liberating Christchurch’s rich architectural heritage when applied to the context of destructed buildings within Christchurch.  The aim of this thesis is to formulate a narrative around the embodiment of mixed reality when subjected to the fragmentary historical architecture of Christchurch. Mixed reality will aspire to act as the defining ligature that holds the past, present and future of Christchurch’s architectural heritage intact as if it is all part of the same continuum.  This thesis will focus on the design of a memorial museum within a heavily damaged historical trust registered building due to the Christchurch earthquake. It is important and relevant to conceive the idea of such a design as history is what makes everything we know. The memories of the past, the being of the now and the projection of the future is the basis and fundamental imperative in honouring the city and people of Christchurch. Using the technologies of Mixed Reality and the realm of its counter parts the memorial museum will be a definitive proposition of desire in providing a psychological and physical understanding towards a better Christchurch, for the people of Christchurch.  This thesis serves to explore the renovation possibilities of the Canterbury provincial council building in its destructed state to produce a memorial museum for the Christchurch earthquake. The design seeks to mummify the building in its raw state that sets and develops the narrative through the spaces. The design intervention is kept at a required minimum and in doing so manifests a concentrated eloquence to the derelict space. The interior architecture unlocks the expression of history and time encompassed within a destructive and industrialised architectural dialogue. History is the inhabitant of the building, and using the physical and virtual worlds it can be set free.  This thesis informs a design for a museum in central Christchurch that celebrates and informs the public on past, present and future heritage aspects of Christchurch city. Using mixed reality technologies the spatial layout inside will be a direct effect of the mixed reality used and the exploration of the physical and digital heritage aspects of Christchurch. The use of technology in today’s world is so prevalent that incorporating it into a memorial museum for Christchurch would not only be interesting and exploratory but also offer a sense of pushing forward and striving beyond for a newer, fresher Christchurch. The memorial museum will showcase a range of different exhibitions that formulate around the devastating Christchurch earthquake. Using mixed reality technologies these exhibitions will dictate the spaces inside dependant on their various applications of mixed reality as a technology for architecture. Research will include; what the people of Canterbury are most dear to in regards to Christchurch’s historical environment; the use of mixed reality to visualise digital heritage, and the combination of the physical and digital to serve as an architectural mediation between what was, what is and what there could be.

Research papers, University of Canterbury Library

The Canterbury Earthquakes of 2010-2011, in particular the 4th September 2010 Darfield earthquake and the 22nd February 2011 Christchurch earthquake, produced severe and widespread liquefaction in Christchurch and surrounding areas. The scale of the liquefaction was unprecedented, and caused extensive damage to a variety of man-made structures, including residential houses. Around 20,000 residential houses suffered serious damage as a direct result of the effects of liquefaction, and this resulted in approximately 7000 houses in the worst-hit areas being abandoned. Despite the good performance of light timber-framed houses under the inertial loads of the earthquake, these structures could not withstand the large loads and deformations associated with liquefaction, resulting in significant damage. The key structural component of houses subjected to liquefaction effects was found to be their foundations, as these are in direct contact with the ground. The performance of house foundations directly influenced the performance of the structure as a whole. Because of this, and due to the lack of research in this area, it was decided to investigate the performance of houses and in particular their foundations when subjected to the effects of liquefaction. The data from the inspections of approximately 500 houses conducted by a University of Canterbury summer research team following the 4th September 2010 earthquake in the worst-hit areas of Christchurch were analysed to determine the general performance of residential houses when subjected to high liquefaction loads. This was followed by the detailed inspection of around 170 houses with four different foundation types common to Christchurch and New Zealand: Concrete perimeter with short piers constructed to NZS3604, concrete slab-on-grade also to NZS3604, RibRaft slabs designed by Firth Industries and driven pile foundations. With a focus on foundations, floor levels and slopes were measured, and the damage to all areas of the house and property were recorded. Seven invasive inspections were also conducted on houses being demolished, to examine in more detail the deformation modes and the causes of damage in severely affected houses. The simplified modelling of concrete perimeter sections subjected to a variety of liquefaction-related scenarios was also performed, to examine the comparative performance of foundations built in different periods, and the loads generated under various bearing loss and lateral spreading cases. It was found that the level of foundation damage is directly related to the level of liquefaction experienced, and that foundation damage and liquefaction severity in turn influence the performance of the superstructure. Concrete perimeter foundations were found to have performed most poorly, suffering high local floor slopes and being likely to require foundation repairs even when liquefaction was low enough that no surface ejecta was seen. This was due to their weak, flexible foundation structure, which cannot withstand liquefaction loads without deforming. The vulnerability of concrete perimeter foundations was confirmed through modelling. Slab-on-grade foundations performed better, and were unlikely to require repairs at low levels of liquefaction. Ribraft and piled foundations performed the best, with repairs unlikely up to moderate levels of liquefaction. However, all foundation types were susceptible to significant damage at higher levels of liquefaction, with maximum differential settlements of 474mm, 202mm, 182mm and 250mm found for concrete perimeter, slab-on-grade, ribraft and piled foundations respectively when subjected to significant lateral spreading, the most severe loading scenario caused by liquefaction. It was found through the analysis of the data that the type of exterior wall cladding, either heavy or light, and the number of storeys, did not affect the performance of foundations. This was also shown through modelling for concrete perimeter foundations, and is due to the increased foundation strengths provided for heavily cladded and two-storey houses. Heavy roof claddings were found to increase the demands on foundations, worsening their performance. Pre-1930 concrete perimeter foundations were also found to be very vulnerable to damage under liquefaction loads, due to their weak and brittle construction.

Research papers, University of Canterbury Library

Research on responses to trauma has historically focused on the negative repercussions of a struggle with adversity. However, more recently, researchers have begun to examine posttraumatic growth: the positive psychological change that emerges from the struggle with a potentially traumatic event. Associations have been found between posttraumatic growth and greater peritraumatic distress, greater objective severity of trauma exposure, greater perceived stressfulness of events, social support, female gender, cognitive and behavioural responses to trauma, and personality measures. Posttraumatic growth has been measured typically in individuals with varying levels of posttraumatic stress disorder symptoms and other psychological difficulties, such as depression and anxiety. Although some theory and research posits that higher resilience would prohibit posttraumatic growth, no studies have examined posttraumatic growth in a resilient sample. The Canterbury earthquake sequence of 2010 and 2011 involved potentially traumatic events that saw the community struggle with a variety of challenges. However, in the midst of earthquake destruction, some positive initiatives emerged, driven by locals. The Gap Filler project (using city spaces left empty from fallen buildings for art and interactive community projects) and the Student Volunteer Army (groups of volunteers coordinated to help others in need) are examples of this. In this context, it seemed likely that posttraumatic growth was occurring and might be seen in individuals who were coping well with challenges. Culture is theorised to influence the posttraumatic growth process (Calhoun, Cann, & Tedeschi, 2010), and the nature of the trauma undergone is also likely to influence the process of growth. The current thesis measures posttraumatic growth quantitatively and qualitatively in a New Zealand sample. It measures and describes posttraumatic growth in a resilient population after the earthquake sequence of 2010 and 2011 in Canterbury, New Zealand. Findings are used to test current models of posttraumatic growth for individuals coping well after trauma and to elaborate on mechanisms proposed by models such as the comprehensive model of posttraumatic growth (Calhoun et al., 2010) and the organismic valuing theory of growth through adversity (Joseph & Linley, 2005). Correlates of posttraumatic growth are examined and likely supporting factors of posttraumatic growth are identified for this population. Study 1 used quantitative analysis to explore correlates of posttraumatic growth and found that greater posttraumatic growth related to greater peritraumatic distress, greater perceived stressfulness of earthquake events, greater objective stressfulness of earthquake events, greater difficulty with stressful life events, less satisfaction with social support, and female gender. Findings from Study 1 give important detail about the nature of distress included in the comprehensive model of posttraumatic growth (Calhoun et al., 2010) for this population. Levels of posttraumatic growth were lower than those in North American studies but similar to those in a Chinese study. The current sample, however, showed lower endorsement of Relating to Others than the Chinese study, perhaps because of cultural differences. Study 2 used qualitative analysis to examine the experience of posttraumatic growth in the sample. The theme of ‘a greater sense of community’ was found and adds to the comprehensive model of posttraumatic growth, in that an expression of posttraumatic growth (a greater connection with others) can inform ongoing social processing in the posttraumatic growth process. Having a formal or informal role in earthquake recovery appeared to influence self-concept and reflection; this elaborates on the influence of role on reflection in Calhoun et al.’s model. Findings illustrate possible mechanisms of the organismic valuing process theorised by Joseph and Linley (2005). Implications include the importance of providing opportunities for individuals to take on a role after a crisis, encouraging them to act to respond to difficulties, and encouraging them to meet personal needs for relatedness, competence, and autonomy. Finding positive aspects to a difficult situation, as well as acknowledging adversity, can be supported in future to help individuals process their traumas. As a society, we can help individuals cope with adversity by providing ways they can meet their needs for relatedness, competence, and autonomy. Community groups likely provide opportunities for members to act in ways that meet such needs. This will allow them to effectively act to meet their needs in times of crisis.

Research papers, University of Canterbury Library

Liquefaction of sandy soil has been observed to cause significant damage to infrastructure during major earthquakes. Historical cases of liquefaction have typically occurred in sands containing some portion of fines particles, which are defined as 75μm or smaller in diameter. The effects of fines on the undrained behaviour of sand are not however fully understood, and this study therefore attempts to quantify these effects through the undrained testing of sand mixed with non-plastic fines sourced from Christchurch, New Zealand. The experimental program carried out during this study consisted of undrained monotonic and cyclic triaxial tests performed on three different mixtures of sand and fines: the Fitzgerald Bridge mixture (FBM), and two Pinnacles Sand mixtures (PSM1 and PSM2). The fines content of each host sand was systematically varied up to a maximum of 30%, with all test specimens being reconstituted using moist tamping deposition. The undrained test results from the FBM soils were interpreted using a range of different measures of initial state. When using void ratio and relative density, the addition of fines to the FBM sand caused more contractive behaviour for both monotonic and cyclic loadings. This resulted in lower strengths at the steady state of deformation, and lower liquefaction resistances. When the intergranular void ratio was used for the interpretation, the effect of additional fines was to cause less contractive response in the sand. The state parameter and state index were also used to interpret the undrained cyclic test results – these measures suggested that additional fines caused less contractive sand behaviour, the opposite to that observed when using the void ratio. This highlighted the dependency on the parameter chosen as a basis for the response comparison when determining the effects of fines, and pointed out a need to identify a measure that normalizes such effects. Based on the FBM undrained test results and interpretations, the equivalent granular void ratio, e*, was identified from the literature as a measure of initial state that normalizes the effects of fines on the undrained behaviour of sand up to a fines content of 30%. This is done through a parameter within the e* definition termed the fines influence factor, b, which quantifies the effects of fines from a value of zero (no effect) to one (same effect as sand particles). The value of b was also determined to be different when interpreting the steady state lines (bSSL) and cyclic resistance curves (bCR) respectively for a given mixture of sand and fines. The steady state lines and cyclic resistance curves of the FBM soils and a number of other sand-fines mixtures sourced from the literature were subsequently interpreted using the equivalent granular void ratio concept, with bSSL and bCR values being back-calculated from the respective test data sets. Based on these interpretations, it was concluded that e* was conceptually a useful parameter for characterizing and quantifying the effects of fines on the undrained behaviour of sand, assuming the fines influence factor value could be derived. To allow prediction of the fines influence factor values, bSSL and bCR were correlated with material and depositional properties of the presented sand-fines mixtures. It was found that as the size of the fines particles relative to the sand particles became smaller, the values of bSSL and bCR reduced, indicating lower effect of fines. The same trend was also observed as the angularity of the sand particles increased. The depositional method was found to influence the value of bCR, due to the sensitivity of cyclic loading to initial soil fabric. This led to bSSL being used as a reference for the effect of fines, with specimens prepared by moist tamping having bCR > bSSL, and specimens prepared by slurry deposition having bCR < bSSL. Finally the correlations of the fines influence factor values with material and depositional properties were used to define the simplified estimation method – a procedure capable of predicting the approximate steady state lines and cyclic resistance curves of a sand as the non-plastic fines content is increased up to 30%. The method was critically reviewed based on the undrained test results of the PSM1 and PSM2 soils. This review suggested the method could accurately predict undrained response curves as the fines content was raised, based on the PSM1 test results. It also however identified some key issues with the method, such as the inability to accurately predict the responses of highly non-uniform soils, a lack of consideration for the entire particle size distribution of a soil, and the fact the errors in the prediction of bSSL carry through into the prediction of bCR. Lastly some areas of further investigation relating to the method were highlighted, including the need to verify the method through testing of sandy soils sourced from outside the Christchurch area, and the need to correlate the value of bCR with additional soil fabrics / depositional methods.

Research papers, University of Canterbury Library

As a consequence of the 2010 – 2011 Canterbury earthquake sequence, Christchurch experienced widespread liquefaction, vertical settlement and lateral spreading. These geological processes caused extensive damage to both housing and infrastructure, and increased the need for geotechnical investigation substantially. Cone Penetration Testing (CPT) has become the most common method for liquefaction assessment in Christchurch, and issues have been identified with the soil behaviour type, liquefaction potential and vertical settlement estimates, particularly in the north-western suburbs of Christchurch where soils consist mostly of silts, clayey silts and silty clays. The CPT soil behaviour type often appears to over-estimate the fines content within a soil, while the liquefaction potential and vertical settlement are often calculated higher than those measured after the Canterbury earthquake sequence. To investigate these issues, laboratory work was carried out on three adjacent CPT/borehole pairs from the Groynes Park subdivision in northern Christchurch. Boreholes were logged according to NZGS standards, separated into stratigraphic layers, and laboratory tests were conducted on representative samples. Comparison of these results with the CPT soil behaviour types provided valuable information, where 62% of soils on average were specified by the CPT at the Groynes Park subdivision as finer than what was actually present, 20% of soils on average were specified as coarser than what was actually present, and only 18% of soils on average were correctly classified by the CPT. Hence the CPT soil behaviour type is not accurately describing the stratigraphic profile at the Groynes Park subdivision, and it is understood that this is also the case in much of northwest Christchurch where similar soils are found. The computer software CLiq, by GeoLogismiki, uses assessment parameter constants which are able to be adjusted with each CPT file, in an attempt to make each more accurate. These parameter changes can in some cases substantially alter the results for liquefaction analysis. The sensitivity of the overall assessment method, raising and lowering the water table, lowering the soil behaviour type index, Ic, liquefaction cutoff value, the layer detection option, and the weighting factor option, were analysed by comparison with a set of ‘base settings’. The investigation confirmed that liquefaction analysis results can be very sensitive to the parameters selected, and demonstrated the dependency of the soil behaviour type on the soil behaviour type index, as the tested assessment parameters made very little to no changes to the soil behaviour type plots. The soil behaviour type index, Ic, developed by Robertson and Wride (1998) has been used to define a soil’s behaviour type, which is defined according to a set of numerical boundaries. In addition to this, the liquefaction cutoff point is defined as Ic > 2.6, whereby it is assumed that any soils with an Ic value above this will not liquefy due to clay-like tendencies (Robertson and Wride, 1998). The method has been identified in this thesis as being potentially unsuitable for some areas of Christchurch as it was developed for mostly sandy soils. An alternative methodology involving adjustment of the Robertson and Wride (1998) soil behaviour type boundaries is proposed as follows:  Ic < 1.31 – Gravelly sand to dense sand  1.31 < Ic < 1.90 – Sands: clean sand to silty sand  1.90 < Ic < 2.50 – Sand mixtures: silty sand to sandy silt  2.50 < Ic < 3.20 – Silt mixtures: clayey silt to silty clay  3.20 < Ic < 3.60 – Clays: silty clay to clay  Ic > 3.60 – Organics soils: peats. When the soil behaviour type boundary changes were applied to 15 test sites throughout Christchurch, 67% showed an improved change of soil behaviour type, while the remaining 33% remained unchanged, because they consisted almost entirely of sand. Within these boundary changes, the liquefaction cutoff point was moved from Ic > 2.6 to Ic > 2.5 and altered the liquefaction potential and vertical settlement to more realistic ii values. This confirmed that the overall soil behaviour type boundary changes appear to solve both the soil behaviour type issues and reduce the overestimation of liquefaction potential and vertical settlement. This thesis acts as a starting point towards researching the issues discussed. In particular, future work which would be useful includes investigation of the CLiq assessment parameter adjustments, and those which would be most suitable for use in clay-rich soils such as those in Christchurch. In particular consideration of how the water table can be better assessed when perched layers of water exist, with the limitation that only one elevation can be entered into CLiq. Additionally, a useful investigation would be a comparison of the known liquefaction and settlements from the Canterbury earthquake sequence with the liquefaction and settlement potentials calculated in CLiq for equivalent shaking conditions. This would enable the difference between the two to be accurately defined, and a suitable adjustment applied. Finally, inconsistencies between the Laser-Sizer and Hydrometer should be investigated, as the Laser-Sizer under-estimated the fines content by up to one third of the Hydrometer values.

Audio, Radio New Zealand

A review of the week's news including... Mt Albert voters head to the polls to select a new MP this weekend, we hear from three candidates contesting the by election, Maori political leaders respond explosively to the Labour leader's comments that the Maori party is "not kaupapa Maori", how did a senior council roading manager receive over 1.1 million dollars in payments from a council contractor without his bosses knowing? the High Court rules Kim Dotcom is eligible for extradition US, the Fire Service's principal rural fire officer says lives may have been lost had firefighters not been told to return to their station, Sky TV says a decision to deny its billion dollar proposal to buy Vodafone is bizarre and disappointing, Pharmac considers funding women's sanitary products, we have coverage from the 6th anniversary of the Christchurch earthquake, the Prime Minister puts the board of the NZ Super Fund on notice after it approved a 23 percent pay increase for its Chief Executive, an Australian woman helping New Zealand dairy farmers across the Tasman who have fallen onto hard times is horrified by a lack of Government help and helicopters to Hercules and F-16s to classic spitfire replicas are on display at Ohakea airforce base during this weekend's Air Tattoo.

Research papers, The University of Auckland Library

This section considers forms of collaboration in situated and community projects embedded in important spatial transformation processes in New Zealand cities. It aims to shed light on specific combinations of material and semantic aspects characterising the relation between people and their environment. Contributions focus on participative urban transformations. The essays that follow concentrate on the dynamics of territorial production of associations between multiple actors belonging both to civil society and constituted authority. Their authors were directly engaged in the processes that are reported and conceptualised, thereby offering evidence gained through direct hands-on experience. Some of the investigations use case studies that are conspicuous examples of the recent post-traumatic urban development stemming from the Canterbury earthquakes of 2010-2011. More precisely, these cases belong to the early phases of the programmes of the Christchurch recovery or the Wellington seismic prevention. The relevance of these experiences for the scope of this study lies in the unprecedented height of public engagement at local, national and international levels, a commitment reached also due to the high impact, both emotional and concrete, that affected the entire society.

Research papers, The University of Auckland Library

The Canterbury earthquake series of 2010/2011 has turned the city of Christchurch into a full scale natural laboratory testing the structural and non-structural response of buildings under moderate to very severe earthquake shaking. The lessons learned from this, which have come at great cost socially and economically, are extremely valuable in increasing our understanding of whole building performance in severe earthquakes. Given current initiatives underway on both sides of the Tasman towards developing joint Australasian steel and composite steel/concrete design and construction standards that would span a very wide range of geological conditions and seismic zones, these lessons are relevant to both countries. This paper focusses on the performance of steel framed buildings in Christchurch city, with greatest emphasis on multi-storey buildings, but also covering single storey steel framed buildings and light steel framed housing. It addresses such issues as the magnitude and structural impact of the earthquake series, importance of good detailing, lack of observed column base hinging, the excellent performance of composite floors and it will briefly cover research underway to quantify some of these effects for use in design.

Images, Alexander Turnbull Library

Shows a graph illustrating the 'Growth forecast' for the economy. A large finger representing the 'Reserve Bank' squashes the growth arrow as though it is a fly and it starts to zig-zag crazily downwards. The statement made 16th September looked a shadow of the bright one the Reserve Bank published three months ago. With its forecasts finalised the day before the Canterbury earthquake struck, the Bank has taken secateurs to its economic growth track, and a carving knife to its interest rate path. Instead of GDP growth pushing 4% this year and next, for example, it now struggles to reach 3% in each. It's tempting to think this has been driven by the wobbling international news over recent months. In fact it's been because of a suddenly sombre view around NZ consumer spending and the housing market. (Interest.co.nz) Quantity: 1 digital cartoon(s).

Research papers, The University of Auckland Library

This paper explores the responses by a group of children to an art project that was undertaken by a small school in New Zealand after the September 2010 and February 2011 Christchurch earthquakes. Undertaken over a period of two years, the project aimed to find a suitable form of memorialising this significant event in a way that was appropriate and meaningful to the community. Alongside images that related directly to the event of the earthquakes, the art form of a mosaic was chosen, and consisted of images and symbols that clearly drew on the hopes and dreams of a school community who were refusing to be defined by the disaster. The paper 'writes' the mosaic by placing fragments of speech spoken by the children involved in relation to ideas about memory, affect, and the 'sublime', through the work of Jean-Francois Lyotard. The paper explores the mosaic as constituted by the literal and metaphorical 'broken pieces' of the city of Christchurch in ways that confer pedagogic value inscribed through the creation of a public art space by children. AM - Accepted Manuscript

Research papers, The University of Auckland Library

Mechanistic and scientific approaches to resilience assume that there is a “tipping point” at which a system can no longer absorb adversity; after this point, it is liable to collapse. Some of these perspectives, particularly those stemming from ecology and psychology, recognise that individuals and communities cannot be perpetually resilient without limits. While the resilience paradigm has been imported into the social sciences, the limits to resilience have often been disregarded. This leads to an overestimation of “human resourcefulness” within the resilience paradigm. In policy discourse, practice, and research, resilience seems to be treated as a “limitless” and human quality in which individuals and communities can effectively cope with any hazard at any time, for as long as they want and with any people. We critique these assumptions with reference to the recovery case in Ōtautahi Christchurch, Aotearoa New Zealand following the 2010-11 Canterbury earthquake sequence. We discuss the limits to resilience and reconceptualise resilience thinking for disaster risk reduction and sustainable recovery and development.

Research Papers, Lincoln University

This report forms part of a research project examining rural community resilience to natural hazard events, with a particular focus on transient population groups. A preliminary desktop and scoping exercise was undertaken to examine nine communities affected by the Kaikoura earthquake and to identify the variety of transient population groups that are commonly (and increasingly) found in rural New Zealand (see Wilson & Simmons, 2017). From this, four case study communities – Blenheim, Kaikoura, Waiau and St Arnaud – were selected to represent a range of settlement types. These communities varied in respect of social, economic and geographic features, including the presence of particular transient population groups, and earthquake impact. While the 2016 Kaikoura earthquake provided a natural hazard event on which to focus the research, the research interest was in long-term (and broad) community resilience, rather than short-term (and specific) response and recovery actions which occurred post-earthquake.

Research papers, University of Canterbury Library

This paper discusses the seismic performance of the standard RC office building in Christchurch that is given as a structural design example in NZS3101, the concrete structures seismic standard in New Zealand. Firstly the push-over analysis was carried out to evaluate the lateral load carrying capacity of the RC building and then to compare that carrying capacity with the Japanese standard law. The estimated figures showed that the carrying capacity of the New Zealand standard RC office building of NZS3101:2006 was about one third of Japanese demanded carrying capacity. Secondly, time history analysis of the multi-mass system was performed to estimate the maximum response story drift angle using recorded ground motions. Finally, a three-dimensional analysis was carried out to estimate the response of the building to the 22nd February, 2011 Canterbury earthquake. The following outcomes were obtained. 1) The fundamental period of the example RC building is more than twice that of Japanese simplified calculation, 2) The example building’s maximum storey drift angle reached 2.5% under the recorded ground motions. The main purpose of this work is to provide background information of seismic design practice for the reconstruction of Christchurch.

Research papers, University of Canterbury Library

The Civil Defense understanding of the role of radio in disaster tends to focus on its value in providing essential information during and after the event. However this role is compromised when a station’s premises are destroyed, or rendered inaccessible by official cordons. The Radio Quake study examines how radio stations in Christchurch managed to resume broadcasting in the aftermath of the earthquake of February 22, 2011. In New Zealand’s heavily networked and commercialised radio environment there is a significant disparity between networked and independent stations’ broadcast commitments and resourcing. All Christchurch radio broadcasters were forced to improvise new locations, complex technical workarounds, and responsive styles of broadcasting after the February 22 earthquake, but the need to restore, or maintain, a full on air presence after the earthquake, rested entirely on often financially tenuous, locally owned and staffed independent radio: student, Iwi, community access, and local commercial stations. This paper will explore the resourcefulness and resilience of broadcasters riding out the aftershocks in hotels, motels, bedrooms, and a horse truck, using digital technologies in new ways to reimagine the practice of radio in Christchurch.

Research papers, University of Canterbury Library

The Christchurch earthquake sequence has been on-going since September 4th 2010. The largest two earthquakes, magnitude (M) 7.1 on September 4th and the M 6.3 on February 22nd 2011 caused immediate and significant damage to the city of Christchurch. As a consequence of the earthquakes, the tourism sector in the Canterbury region has been heavily impacted, with broader impacts being felt throughout the South Island. Resilient Organisations and the University of Canterbury began a series of quantitative investigations into the recovery and response of key business sectors to the earthquakes. The purpose of this study was to build on this work by exploring the outcomes of the earthquakes on the tourism sector, a critical economic driver in the region. Two postal surveys were sent to 719 tourism business managers; the first to businesses in the ‘Impact Zone’ defined as areas that experienced Modified Mercalli intensities greater than 6. The second survey was sent to the remaining businesses throughout the Canterbury region (‘Rest of Canterbury’). Response rates were 46% response for the Impact Zone, and 29% for the Rest of Canterbury. Key findings:

Research papers, University of Canterbury Library

Prior to the devastating 2010 and 2011 earthquakes in Christchurch, New Zealand, the University of Canterbury (UC) was renowned for its graduates’ academic preparation and its staff’s research outputs. The town/gown relationship was aloof and strained due to UC’s move from the CBD in the 1970s and students being seen as troublemakers. Despite its vision of people prepared to make a difference, the University’s students and staff were not seen as making a difference in the local community or as being engaged citizens. 
This changed when over 9,000 UC students mobilized themselves into the Student Volunteer Army to provide immediate relief across Christchurch following the four major quakes of 2010 and 2011. Suddenly, UC students were seen as saviors, not miscreants and a focus on citizenship education as part of the University’s strategic direction began to take shape. 
Based on qualitative and quantitative research conducted at UC over the past four years, this interactive presentation will highlight the findings, conclusions, and implications of how the University has been transformed into a recognized, international leader in citizenship education. By integrating students’ community service into their academic studies, the University has changed its persona while students have gained academically, civically, and personally.

Research papers, University of Canterbury Library

This article discusses the use of radio after major earthquakes in Christchurch, New Zealand, in 2010 and 2011. It draws on archival sources to retrospectively research post-quake audiences in the terms people used during and soon after the earthquakes through personal narratives and Twitter. Retrospective narratives of earthquake experiences affirm the value of radio for communicating the scale of disaster and comforting listeners during dislocation from safe home spaces. In the narratives radio is often compared with television, which signifies electricity supply and associated comfort but also visually confirms the city’s destruction. Twitter provides insights into radio use from within the disaster period, but its more global reach facilitates reflection on online and international radio from outside the disaster-affected area. This research demonstrates the value of archival audience research, and finds that the combination of online radio and Twitter enables a new form of participatory disaster spectatorship from afar.

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence 2010-2011 (CES) induced widespread liquefaction in many parts of Christchurch city. Liquefaction was more commonly observed in the eastern suburbs and along the Avon River where the soils were characterised by thick sandy deposits with a shallow water table. On the other hand, suburbs to the north, west and south of the CBD (e.g. Riccarton, Papanui) exhibited less severe to no liquefaction. These soils were more commonly characterised by inter-layered liquefiable and non-liquefiable deposits. As part of a related large-scale study of the performance of Christchurch soils during the CES, detailed borehole data including CPT, Vs and Vp have been collected for 55 sites in Christchurch. For this subset of Christchurch sites, predictions of liquefaction triggering using the simplified method (Boulanger & Idriss, 2014) indicated that liquefaction was over-predicted for 94% of sites that did not manifest liquefaction during the CES, and under-predicted for 50% of sites that did manifest liquefaction. The focus of this study was to investigate these discrepancies between prediction and observation. To assess if these discrepancies were due to soil-layer interaction and to determine the effect that soil stratification has on the develop-ment of liquefaction and the system response of soil deposits.

Research papers, University of Canterbury Library

This research investigates the validation of simulated ground motions on complex structural systems. In this study, the seismic responses of two buildings are compared when they are subjected to as-recorded ground motions and simulated ones. The buildings have been designed based on New Zealand codes and physically constructed in Christchurch, New Zealand. The recorded ground motions are selected from 40 stations database of the historical 22 Feb. 2011 Christchurch earthquake. The Graves and Pitarka (2015) methodology is used to generate the simulated ground motions. The geometric mean of maximum inter-story drift and peak floor acceleration are selected as the main seismic responses. Also, the variation of these parameters due to record to record variability are investigated. Moreover, statistical hypothesis testing is used to investigate the similarity of results between observed and simulated ground motions. The results indicate a general agreement between the peak floor acceleration calculated by simulated and recorded ground motions for two buildings. While according to the hypothesis tests result, the difference in drift can be significant for the building with a shorter period. The results will help engineers and researchers to use or revise the procedure by using simulated ground motions for obtaining seismic responses.

Research papers, University of Canterbury Library

© 2018 Springer Nature B.V. This study compares seismic losses considering initial construction costs and direct-repair costs for New Zealand steel moment-resisting frame buildings with friction connections and those with extended bolted-end-plate connections. A total of 12 buildings have been designed and analysed considering both connection types, two building heights (4-storey and 12-storey), and three locations around New Zealand (Auckland, Christchurch, and Wellington). It was found that buildings with friction connections required design to a higher design ductility, yet are generally stiffer due to larger beams being required to satisfy higher connection overstrength requirements. This resulted in the frames with friction connections experiencing lower interstorey drifts on most floors but similar peak total floor accelerations, and subsequently incurring lower drift-related seismic repair losses. Frames with friction connections tended to have lower expected net-present-costs within 50 years of the building being in service for shorter buildings and/or if located in regions of high seismicity. None of the frames with friction connections in Auckland showed any benefits due to the low seismicity of the region.

Research papers, University of Canterbury Library

Validating dynamic responses of engineered systems subjected to simulated ground motions is essential in scrutinising the applicability of simulated ground motions for engineering demand analyses. This paper compares the responses of two 3D building models subjected to recorded and simulated ground motions scaled to the NZS1170.5 design response spectrum, in order to evaluate the applicability of simulated ground motions for use in conventional engineering practice in New Zealand. The buildings were designed according to the NZS1170.5 and physically constructed in Christchurch prior to the 2010-2011 Canterbury earthquakes. 40 recorded ground motions from the 22 February 2011 Christchurch earthquake, along with the simulated ground motions for this event from Razafindrakoto et al. (2018) are considered. The seismic responses of the structures are principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, the results indicate a general agreement in seismic demands obtained using the recorded and simulated ensembles of ground motions and provide further evidence that simulated ground motions using state-of-the-art methods can be used in code-based structural performance assessments inplace of, or in combination with, ensembles of recorded ground motions.

Research papers, University of Canterbury Library

In the last two decades, New Zealand (NZ) has experienced significant earthquakes, including the 2010 M 7.2 Darfield, 2011 M 6.2 Christchurch, and 2016 M 7.8 Kaikōura events. Amongst these large events, tens of thousands of smaller earthquakes have occurred. While previous event and ground-motion databases have analyzed these events, many events below M 4 have gone undetected. The goal of this study is to expand on previous databases, particularly for small magnitude (M<4) and low-amplitude ground motions. This new database enables a greater understanding of regional variations within NZ and contributes to the validity of internationally developed ground-motion models. The database includes event locations and magnitude estimates with uncertainty considerations, and tectonic type assessed in a hierarchical manner. Ground motions are extracted from the GeoNet FDSN server and assessed for quality using a neural network classification approach. A deep neural network approach is also utilized for picking P and S phases for determination of event hypocentres. Relative hypocentres are further improved by double-difference relocation and will contribute toward developing shallow (< 50 km) seismic tomography models. Analysis of the resulting database is compared with previous studies for discussion of implications toward national hazard prediction models.

Research papers, University of Canterbury Library

1. Background and Objectives This poster presents results from ground motion simulations of small-to-moderate magnitude (3.5≤Mw≤5.0) earthquake events in the Canterbury, New Zealand region using the Graves and Pitarka (2010,2015) methodology. Subsequent investigation of systematic ground motion effects highlights the prediction bias in the simulations which are also benchmarked against empirical ground motion models (e.g. Bradley (2013)). In this study, 144 earthquake ruptures, modelled as point sources, are considered with 1924 quality-assured ground motions recorded across 45 strong motion stations throughout the Canterbury region, as shown in Figure 1. The majority of sources are Mw≥4.0 and have centroid depth (CD) 10km or shallower. Earthquake source descriptions were obtained from the GeoNet New Zealand earthquake catalogue. The ground motion simulations were performed within a computational domain of 140km x 120km x 46km with a finite difference grid spacing of 0.1km. The low-frequency (LF) simulations utilize the 3D Canterbury Velocity Model while the high-frequency (HF) simulations utilize a generic regional 1D velocity model. In the LF simulations, a minimum shear wave velocity of 500m/s is enforced, yielding a maximum frequency of 1.0Hz.

Articles, UC QuakeStudies

A copy of a letter from Empowered Christchurch to Peter Sparrow, Director of Building Control and Rebuild at the Christchurch City Council, sent on 23 October 2014. The letter is a response to another letter sent by Peter Sparrow to Empowered Christchurch regarding existing use rights and exemptions from a building consent. In this letter, Empowered Christchurch requests furthur clarification from the Christchurch Building Consent Authority about these concepts.

Images, UC QuakeStudies

A scanned copy of a black and white photograph of the argon gas laser used by David Lockwood in his PhD research at the University of Canterbury. David says, "In contrast to the He-Ne laser I developed for my MSc thesis, the laser I used was one of the first commercial lasers - an argon gas laser that required frequent painstaking maintenance. This was because the He-Ne gas laser did not produce enough power for my experiments".

Audio, Radio New Zealand

Highlights from Radio New Zealand National's programmes for the week ending Friday 7th of September. This week......two years after the BIG Earthquake in Christchurch, and the Pike River Mine Disaster, how did the media respond to those events ... Mummies, Cannibals and Vampires; The History of Corpse medicine from the Renaissance to The Victorians ... a primary school project gets back to growing fruit and vegetables ... a Maori carving from A german prisoner of War camp comes back home ... the human side of Google ... and an affectionate look back at Broadcasts To Schools.