Search

found 3469 results

Research papers, University of Canterbury Library

Natural catastrophes are increasing worldwide. They are becoming more frequent but also more severe and impactful on our built environment leading to extensive damage and losses. Earthquake events account for the smallest part of natural events; nevertheless seismic damage led to the most fatalities and significant losses over the period 1981-2016 (Munich Re). Damage prediction is helpful for emergency management and the development of earthquake risk mitigation projects. Recent design efforts focused on the application of performance-based design engineering where damage estimation methodologies use fragility and vulnerability functions. However, the approach does not explicitly specify the essential criteria leading to economic losses. There is thus a need for an improved methodology that finds the critical building elements related to significant losses. The here presented methodology uses data science techniques to identify key building features that contribute to the bulk of losses. It uses empirical data collected on site during earthquake reconnaissance mission to train a machine learning model that can further be used for the estimation of building damage post-earthquake. The first model is developed for Christchurch. Empirical building damage data from the 2010-2011 earthquake events is analysed to find the building features that contributed the most to damage. Once processed, the data is used to train a machine-learning model that can be applied to estimate losses in future earthquake events.

Images, UC QuakeStudies

A photograph of a volunteer from the Wellington Emergency Management Office sitting on a bed in a campervan. The campervan served as temporary accommodation for emergency management personnel who travelled to Christchurch after the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of signs on the windows of the Christchurch Art Gallery. The art gallery was used as the temporary Civil Defence headquarters after the 22 February 2011 earthquake. The signs read, "Today is Thursday 3 March 2011" and "Wash your hands!". In the background, emergency management personnel and a New Zealand Fire Service truck can be seen.

Research Papers, Lincoln University

Numerous studies have shown that urban soils can contain elevated concentrations of heavy metals (HMs). Christchurch, New Zealand, is a relatively young city (150 years old) with a population of 390,000. Most soils in Christchurch are sub-urban, with food production in residential gardens a popular activity. Earthquakes in 2010 and 2011 have resulted in the re-zoning of 630 ha of Christchurch, with suggestions that some of this land could be used for community gardens. We aimed to determine the HM concentrations in a selection of suburban gardens in Christchurch as well as in soils identified as being at risk of HM contamination due to hazardous former land uses or nearby activities. Heavy metal concentrations in suburban Christchurch garden soils were higher than normal background soil concentrations. Some 46% of the urban garden samples had Pb concentrations higher than the residential land use national standard of 210 mg kg⁻¹, with the most contaminated soil containing 2615 mg kg⁻¹ Pb. Concentrations of As and Zn exceeded the residential land use national standards (20 mg kg⁻¹ As and 400 mg kg⁻¹ Zn) in 20% of the soils. Older neighbourhoods had significantly higher soil HM concentrations than younger neighbourhoods. Neighbourhoods developed pre-1950s had a mean Pb concentration of 282 mg kg⁻¹ in their garden soils. Soil HM concentrations should be key criteria when determining the future land use of former residential areas that have been demolished because of the earthquakes in 2010 and 2011. Redeveloping these areas as parklands or forests would result in less human HM exposure than agriculture or community gardens where food is produced and bare soil is exposed.

Research papers, University of Canterbury Library

Background Liquefaction induced land damage has been identified in more than 13 notable New Zealand earthquakes within the past 150 years, as presented on the timeline below. Following the 2010-2011 Canterbury Earthquake Sequence (CES), the consequences of liquefaction were witnessed first-hand in the city of Christchurch and as a result the demand for understanding this phenomenon was heightened. Government, local councils, insurers and many other stakeholders are now looking to research and understand their exposure to this natural hazard.

Research papers, University of Canterbury Library

Heathcote Valley school strong motion station (HVSC) consistently recorded ground motions with higher intensities than nearby stations during the 2010-2011 Canterbury earthquakes. For example, as shown in Figure 1, for the 22 February 2011 Christchurch earthquake, peak ground acceleration at HVSC reached 1.4 g (horizontal) and 2 g (vertical), the largest ever recorded in New Zealand. Strong amplification of ground motions is expected at Heathcote Valley due to: 1) the high impedance contrast at the soil-rock interface, and 2) the interference of incident and surface waves within the valley. However, both conventional empirical ground motion prediction equations (GMPE) and the physics-based large scale ground motions simulations (with empirical site response) are ineffective in predicting such amplification due to their respective inherent limitations.

Images, UC QuakeStudies

A photograph of the earthquake damage the brick fence of a house in Christchurch. Bricks from the broken fence have been stacked on the footpath in front. Liquefaction has been piled on the footpath and road cones placed in front.

Images, UC QuakeStudies

A photograph of the earthquake damage the brick fence of a house in Christchurch. Bricks from the broken fence have been stacked on the footpath in front. Liquefaction has been piled on the footpath and road cones placed in front.

Images, UC QuakeStudies

A photograph of a kitchen in the back of a van parked in Hagley Park. The van was one of many that were used as temporary accommodation for emergency management personnel who travelled to Christchurch after the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of the rubble from the Observatory tower in the South Quad of the Christchurch Arts Centre. The tower collapsed during the 22 February 2011 earthquake. A digger was used to clear the rubble away from the building. Scaffolding constructed around the tower has also collapsed and is amongst the rubble. A car and the bumper of another car can be seen under the rubble.

Images, UC QuakeStudies

A photograph of the rubble of the Observatory tower in the South Quad of the Christchurch Arts Centre. The tower collapsed during the 22 February 2011 earthquake. A digger was used to clear the rubble away from the building. Scaffolding constructed around the tower has also collapsed and is amongst the rubble. In the background is the damaged tower with a tarpaulin draped over the top.

Images, UC QuakeStudies

A photograph of the rubble of the Observatory tower in the South Quad of the Christchurch Arts Centre. The tower collapsed during the 22 February 2011 earthquake and a digger was used to clear the rubble away from the building. Scaffolding constructed around the tower has also collapsed and is amongst the rubble. In the background is the damaged tower with a tarpaulin draped over the top.

Images, UC QuakeStudies

A photograph of a Christchurch City Council red sticker. The sticker was used by the Civil Defence after the 2010 and 2011 earthquakes to indicate that a building had been inspected and that serious structural damage had been found. The sticker states that there should be no entry to the building. It also states that 'entry may result in death or injury'.

Images, UC QuakeStudies

A photograph of the earthquake damage to a property in the Christchurch central city. Part of the roof of the property has collapsed, spilling material onto the balcony below. A sign in the foreground reads, "Wots your councillor doing for your water?".

Images, UC QuakeStudies

For the first time in November 2011, Christchurch residents finally had the opportunity to see the earthquake-damaged city centre on the Red Zone bus tours organised by CERA. The podium which formerly held the Godley statue. Behind is the Regent Theatre dome which has been removed from the building.

Research Papers, Lincoln University

Creativity that is driven by a need for physical or economic survival, which disasters are likely to inspire, raises the question of whether such creativity fits with conventional theories and perspectives of creativity. In this paper we use the opportunity afforded by the 2010-2013 Christchurch, New Zealand earthquakes to follow and assess the creative practices and responses of a number of groups and individuals. We use in-depth interviews to tease out motivations and read these against a range of theoretical propositions about creativity. In particular, we focus on the construct of “elite panic” and the degree to which this appeared to be evident in the Christchurch earthquakes context. Bureaucratic attempts to control or limit creativity were present but they did not produce a completely blanket dampening effect. Certain individuals and groups seemed to be pre-equipped to navigate or ignore potential blocks to creativity. We argue, using Geir Kaufmann’s novelty-creativity matrix and aspects of Teresa Amabile’s and Michael G. Pratt’s revised componential theory of creativity that a special form of disaster creativity does exist.

Research papers, The University of Auckland Library

This thesis presents the application of data science techniques, especially machine learning, for the development of seismic damage and loss prediction models for residential buildings. Current post-earthquake building damage evaluation forms are developed for a particular country in mind. The lack of consistency hinders the comparison of building damage between different regions. A new paper form has been developed to address the need for a global universal methodology for post-earthquake building damage assessment. The form was successfully trialled in the street ‘La Morena’ in Mexico City following the 2017 Puebla earthquake. Aside from developing a framework for better input data for performance based earthquake engineering, this project also extended current techniques to derive insights from post-earthquake observations. Machine learning (ML) was applied to seismic damage data of residential buildings in Mexico City following the 2017 Puebla earthquake and in Christchurch following the 2010-2011 Canterbury earthquake sequence (CES). The experience showcased that it is readily possible to develop empirical data only driven models that can successfully identify key damage drivers and hidden underlying correlations without prior engineering knowledge. With adequate maintenance, such models have the potential to be rapidly and easily updated to allow improved damage and loss prediction accuracy and greater ability for models to be generalised. For ML models developed for the key events of the CES, the model trained using data from the 22 February 2011 event generalised the best for loss prediction. This is thought to be because of the large number of instances available for this event and the relatively limited class imbalance between the categories of the target attribute. For the CES, ML highlighted the importance of peak ground acceleration (PGA), building age, building size, liquefaction occurrence, and soil conditions as main factors which affected the losses in residential buildings in Christchurch. ML also highlighted the influence of liquefaction on the buildings losses related to the 22 February 2011 event. Further to the ML model development, the application of post-hoc methodologies was shown to be an effective way to derive insights for ML algorithms that are not intrinsically interpretable. Overall, these provide a basis for the development of ‘greybox’ ML models.

Images, UC QuakeStudies

A photograph of members of the New Zealand Police using a rescue dog to inspect an earthquake-damaged house in Christchurch. The front and side of the house has collapsed, the bricks and other rubble spilling onto the garden, exposing the rooms inside.

Articles, UC QuakeStudies

An article from the Media Studies Journal of Aotearoa New Zealand Volume 14, Number 1. The article is titled, "Heroic Radio: a study of radio responses in the immediate aftermath of the September 2010 Earthquake in Christchurch, New Zealand". It was written by Ruth Zanker.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Iconic Bar and the former Christchurch City Council offices on Manchester Street. The outer walls of the Council offices and the top storey of Iconic have collapsed, exposing the insides of the buildings. The bricks and other rubble have been cleared from the footpath in front. USAR codes have been spray-painted next to the entrance of Iconic.

Research papers, The University of Auckland Library

Following the 2010–2011 Canterbury earthquakes, a renewed focus has been directed across New Zealand to the hazard posed by the country‘s earthquake-vulnerable buildings, namely unreinforced masonry (URM) and reinforced concrete (RC) buildings with potentially nonductile components that have historically performed poorly in large earthquakes. The research reported herein was pursued with the intention of addressing several recommendations made by the Canterbury Earthquakes Royal Commission of Inquiry which were classified into the following general categories:  Identification and provisional vulnerability assessment of URM and RC buildings and building components;  Testing, assessment, and retrofitting of URM walls loaded out-of-plane, with a particular focus on highly vulnerable URM cavity walls;  Testing and assessment of RC frame components, especially those with presumably non-ductile reinforcement detailing;  Portfolio management considering risks, regulations, and potential costs for a portfolio that includes several potentially earthquake-vulnerable buildings; and  Ongoing investigations and proposed research needs. While the findings from the reported research have implications for seismic assessments of buildings across New Zealand and elsewhere, an emphasis was placed on Auckland given this research program‘s partnership with the Auckland Council, the Auckland region accounting for about a third each of the country‘s population and economic production, and the number and variety of buildings within the Auckland building stock. An additional evaluation of a historic building stock was carried out for select buildings located in Hawke‘s Bay, and additional experimental testing was carried out for select buildings located in Hawke‘s Bay and Christchurch.

Images, UC QuakeStudies

A photograph of the rubble of the Observatory tower in the South Quad of the Christchurch Arts Centre. The tower collapsed during the 22 February 2011 earthquake. A digger was used to clear the rubble away from the building. Scaffolding constructed around the tower has also collapsed and is amongst the rubble. In the background is a shipping container. A red sticker has been placed on the door to the Physics Building.

Images, UC QuakeStudies

A photograph of a portable shower unit set up in Hagley Park for the emergency management personnel who travelled to Christchurch after the 22 February 2011 earthquake. A clothes line has been set up by tying ropes to the shower unit and a digger.

Research Papers, Lincoln University

Within four weeks of the September 4 2010 Canterbury Earthquake a new, loosely-knit community group appeared in Christchurch under the banner of “Greening the Rubble.” The general aim of those who attended the first few meetings was to do something to help plug the holes that had already appeared or were likely to appear over the coming weeks in the city fabric with some temporary landscaping and planting projects. This article charts the first eighteen months of Greening the Rubble and places the initiative in a broader context to argue that although seismic events in Christchurch acted as a “call to palms,” so to speak, the city was already in need of some remedial greening. It concludes with a reflection on lessons learned to date by GTR and commentary on the likely issues ahead for this new mini-social-environmental movement in the context of a quake-affected and still quake-prone major New Zealand city. One of the key lessons for GTR and all of those involved in Christchurch recovery activities to date is that the city is still very much in the middle of the event and is to some extent a laboratory for seismic and agency management studies alike.

Images, UC QuakeStudies

A photograph of volunteers from the Wellington Emergency Management Office being photographed in front of a truck. The volunteers are preparing to travel to Christchurch to help out after the 22 February 2011 earthquake. In the background is the Wellington Emergency Management Office building.

Images, UC QuakeStudies

A photograph of members of the Wellington Emergency Management Office at a graduation ceremony in the Wellington Town Hall. The volunteers were awarded certificates of appreciation at the ceremony, for their work in the emergency response to the 22 February 2011 earthquake in Christchurch.

Images, UC QuakeStudies

A photograph of volunteers from the Wellington Emergency Management Office being photographed in front of a truck. The volunteers are preparing to travel to Christchurch to help out after the 22 February 2011 earthquake. In the background is the Wellington Emergency Management Office building.