Search

found 3452 results

Images, UC QuakeStudies

A photograph of the earthquake damage the brick fence of a house in Christchurch. Bricks from the broken fence have been stacked on the footpath in front. Liquefaction has been piled on the footpath and road cones placed in front.

Images, UC QuakeStudies

A photograph of the earthquake damage the brick fence of a house in Christchurch. Bricks from the broken fence have been stacked on the footpath in front. Liquefaction has been piled on the footpath and road cones placed in front.

Images, UC QuakeStudies

A Civil Defence staff member talking on his cell phone, he is holding clipboard with a form titled 'Christchurch Eq rapid assessment form level 1'. The brickwork of the house has crumbled and the broken windows have been boarded up.

Research papers, The University of Auckland Library

The current seismic design practice for reinforced concrete (RC) walls has been drawn into question following the unsatisfactory performance of several RC wall buildings during the Canterbury earthquakes. An overview of current research being undertaken at the University of Auckland into the seismic behaviour of RC walls is presented. The main objectives of this research project are to understand the observed performance of RC walls in Christchurch, quantify the seismic loads on RC walls, and developed improved design procedures for RC walls that will assist in revisions to the New Zealand Concrete Structures Standard. A database summarising the performance of RC wall buildings in the Christchurch CBD was collated to identify damage modes and case-study buildings. A detailed investigation is underway to verify the seismic performance of lightly reinforced concrete walls and initial numerical modeling and small-scale tests are presented in addition to details of planned experimental tests of RC walls. Numerical modelling is being used to understand the potential influence that interactions between walls and other structural elements have on the seismic response of buildings and the loads generated on RC walls. The results from finite element analysis of a severely damaged RC wall in Christchurch highlighted the effect that the floor diaphragms have on the distribution of shear stains in the wall.

Images, UC QuakeStudies

University of Canterbury Vice-Chancellor Rod Carr speaking with UCSA President Kohan McNab and former Chancellor Rex Williams, inside the UCSA's "Big Top" tent. The tent was erected in the UCSA car park to provide support for students in the aftermath of the 22 February 2011 earthquake. Around them students have gathered to watch a local musician play. The student have spent the day clearing liquefaction from Christchurch properties as part of the Student Volunteer Army.

Images, UC QuakeStudies

University of Canterbury Vice-Chancellor Rod Carr speaking with UCSA President Kohan McNab and former Chancellor Rex Williams, inside the UCSA's "Big Top" tent. The tent was erected in the UCSA car park to provide support for students in the aftermath of the 22 February 2011 earthquake. Around them students have gathered to watch a local musician play. The student have spent the day clearing liquefaction from Christchurch properties as part of the Student Volunteer Army.

Images, UC QuakeStudies

UCSA President Kohan McNab addressing students at the University of Canterbury inside the UCSA's "Big Top" tent. The tent was erected in the UCSA car park to provide support for students in the aftermath of the 22 February 2011 earthquake. The students have spent the day clearing liquefaction from Christchurch properties as part of the Student Volunteer Army. To the right of McNab, a local musician who has been entertaining the students can be seen.

Images, UC QuakeStudies

A photograph of a make-shift toilet in the Christchurch Art Gallery. A sign behind it reads, "Portaloos Department. We know that 80,000 people need loos. We have 900-1800 available or coming, We don't need to be told people need loos. Thank you. We're number one with your number twos!". Signs below this read, "Toilet Occupied", "Toilet Vacant" and, "In Tray". The Art Gallery was used as the temporary headquarters for Civil Defence after the 22 February 2011 earthquake.

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading during earthquakes poses a significant hazard to the built environment, as observed in Christchurch during the 2010 to 2011 Canterbury Earthquake Sequence (CES). It is critical that geotechnical earthquake engineers are able to adequately predict both the spatial extent of lateral spreads and magnitudes of associated ground movements for design purposes. Published empirical and semi-empirical models for predicting lateral spread displacements have been shown to vary by a factor of <0.5 to >2 from those measured in parts of Christchurch during CES. Comprehensive post- CES lateral spreading studies have clearly indicated that the spatial distribution of the horizontal displacements and extent of lateral spreading along the Avon River in eastern Christchurch were strongly influenced by geologic, stratigraphic and topographic features.

Images, UC QuakeStudies

A photograph of messages attached to the wire fencing around the Christchurch Chinese Methodist Church. A paper heart reads, "'The Lord is close to the broken hearted; He rescues those whose spirits are crushed' Psalm 24:18'. A message from the Japanese Red Cross Psychological Support Team reads, "Thank you, also from us, for your warm support. Our thoughts are with you always".

Images, UC QuakeStudies

A photograph of a line of army trucks parked on the side of a road in the Christchurch central city. A member of the New Zealand Army is tying a bundle of wood onto the roof of one of the trucks.

Images, UC QuakeStudies

Furniture spray-painted with drawings and words by members of the public as part of the Words of Hope project. A message can be seen, reading, "Rebuild Christchurch, be proactive, don't be reactive. Don't miss this opportunity, kia kaha".

Research papers, University of Canterbury Library

Heathcote Valley school strong motion station (HVSC) consistently recorded ground motions with higher intensities than nearby stations during the 2010-2011 Canterbury earthquakes. For example, as shown in Figure 1, for the 22 February 2011 Christchurch earthquake, peak ground acceleration at HVSC reached 1.4 g (horizontal) and 2 g (vertical), the largest ever recorded in New Zealand. Strong amplification of ground motions is expected at Heathcote Valley due to: 1) the high impedance contrast at the soil-rock interface, and 2) the interference of incident and surface waves within the valley. However, both conventional empirical ground motion prediction equations (GMPE) and the physics-based large scale ground motions simulations (with empirical site response) are ineffective in predicting such amplification due to their respective inherent limitations.

Images, UC QuakeStudies

Civil Defence staff conferring at their headquarters in the Christchurch Art Gallery during the immediate aftermath of the 22 February earthquake. On the back wall maps of the city on which areas of importance have been marked with stickers and marker pens can be seen.

Images, UC QuakeStudies

A photograph of road works on a bridge in Christchurch. An excavator has been parked on the left side of the bridge. Road cones have been placed around it. A sign at the entrance to the bridge reads, "No entry to vehicles over 3500kg".

Research Papers, Lincoln University

The urban environment influences the way people live and shape their everyday lives, and microclimate sensitive design can enhance the use of urban streets and public spaces. Innovative approaches to urban microclimate design will become more important as the world’s population becomes ever more urban, and climate change generates more variability and extremes in urban microclimatic conditions. However, established methods of investigation based upon conventions drawn from building services research and framed by physiological concepts of thermal comfort may fail to capture the social dynamics of urban activity and their interrelationship with microclimate. This research investigates the relationship between microclimate and urban culture in Christchurch, New Zealand, based upon the concept of urban comfort. Urban comfort is defined as the socio-cultural (therefore collective) adaptation to microclimate due to satisfaction with the urban environment. It involves consideration of a combination of human thermal comfort requirements and adaptive comfort circumstances, preferences and strategies. A main methodological challenge was to investigate urban comfort in a city undergoing rapid physical change following a series of major earthquakes (2010-2011), and that also has a strongly seasonal climate which accentuates microclimatic variability. The field investigation had to be suitable for rapidly changing settings as buildings were demolished and rebuilt, and be able to capture data relevant to a cycle of seasons. These local circumstances meant that Christchurch was valuable as an example of a city facing rapid and unpredictable change. An interpretive, integrative, and adaptive research strategy that combined qualitative social science methods with biophysical measures was adopted. The results are based upon participant observation, 86 in-depth interviews with Christchurch residents, and microclimate data measurements. The interviews were carried out in a variety of urban settings including established urban settings (places sustaining relatively little damage) and emerging urban settings (those requiring rebuilding) during 2011-2013. Results of this research show that urban comfort depends on adaptive strategies which in turn depend on culture. Adaptive strategies identified through the data analysis show a strong connection between natural and built landscapes, combined with the regional outdoor culture, the Garden City identity and the connections between rural and urban landscapes. The results also highlight that thermal comfort is an important but insufficient indicator of good microclimate design, as social and cultural values are important influences on climate experience and adaptation. Interpretive research is needed to fully understand urban comfort and to provide urban microclimate design solutions to enhance the use of public open spaces in cities undergoing change.

Research papers, The University of Auckland Library

Many large-scale earthquakes all over the world have highlighted the impact of soil liquefaction to the built environment, but the scale of liquefaction-induced damage experienced in Christchurch and surrounding areas following the 2010-2011 Canterbury earthquake sequence (CES) was unparalleled, especially in terms of impact to an urban area. The short time interval between the large earthquakes presented a very rare occasion to examine liquefaction mechanism in natural deposits. The re-liquefaction experienced by the city highlighted the high liquefaction susceptibility of soil deposits in Christchurch, and presented a very challenging problem not only to the local residents but to the geotechnical engineering profession. This paper summarises the lessons learned from CES, and the impacts of the observations made to the current practice of liquefaction assessment and mitigation.

Research Papers, Lincoln University

Imagined landscapes find their form in utopian dreaming. As ideal places, utopias are set up according to the ideals of their designers. Inevitably, utopias become compromised when they move from the imaginary into the actual. Opportunities to create utopias rely largely on a blank slate, a landscape unimpeded by the inconveniences of existing occupation – or even topography. Christchurch has seen two utopian moments. The first was at the time of European settlement in the mid-nineteenth century, when imported ideals provided a model for a new city. The earthquakes of 2010 and 2011 provided a second point at which utopian dreaming spurred visions for the city. Christchurch’s earthquakes have provided a unique opportunity for a city to re-imagine itself. Yet, as is the fate for all imaginary places, reality got in the way.