Search

found 334 results

Images, UC QuakeStudies

A photograph of the Durham Street Methodist Church on Durham Street. The church has almost completely collapsed and only a small section of the structure is still standing. Masonry and other rubble has spilled onto the footpath and street in front. To the right a plywood sign has been propped against the front fence. USAR codes have been spray-painted on the sign.

Images, UC QuakeStudies

A photograph looking south down Montreal Street from the Bealey Avenue. The road has been cordoned off with road cones and a member of the New Zealand Army in a high-visibility vest can be seen guarding it. In the background, a New Zealand Army vehicle can be seen with more soldiers. Some are on bikes to the right.

Images, UC QuakeStudies

A photograph of members of the Wellington Emergency Management Office Emergency Response Team walking down Gloucester Street towards Latimer Square. To the right, shipping containers have been stacked beside the square. A cordon of wire fences and road cones have also been used to cordon off the street in the distance.

Images, UC QuakeStudies

A photograph looking down south down Poplar Lane from the intersection of Lichfield Street. The lane is littered with bricks from the earthquake-damaged buildings above. A car parked on the right side of the lane has also been crushed by the falling bricks. Behind the car a message reading, 'Open your eyes. Life is beautiful', has been chalked on a brick wall.

Images, UC QuakeStudies

A photograph looking west down Cashel Street from the intersection of Colombo Street. A member of the New Zealand Police is sitting on an armchair near the intersection. Behind him is a HireQuip generator. Several signs from nearby businesses are on his left and right. In the background there are large piles of rubble from earthquake-damaged buildings on the street.

Images, UC QuakeStudies

An aerial photograph of a residential area in Burwood. The photograph has been captioned by BeckerFraserPhotos, "New Brighton Road and Avonside Drive with the Avondale Road bridge. This area is red-zoned on the right-hand side of the river and green-zoned on the left-hand side of the river".

Images, UC QuakeStudies

A photograph looking south down Colombo Street from the intersection of Gloucester Street. In the distance a crane is hanging over Cathedral Square. Below the crane is a pile of rubble from the partially-demolished tower of ChristChurch Cathedral. To the right is a smaller crane and a steel structure which will be used to brace the front of the Cathedral.

Images, UC QuakeStudies

A car stuck in a large pothole on River Road. The wheels on the right hand side of the car have fallen into the hole, leaving the car grounded against the road surface. The photographer comments, "This car belonged to a postal delivery worker - the NZ Post bike rack is mounted on the towbar. The owner must have biked home. Later a tow truck arrived to extract the car from the hole that had opened under its front wheel".

Images, UC QuakeStudies

A photograph of emergency management personnel examining the back of a building on Tuam Street. Scaffolding has been constructed up the sides of the building and wire fencing has been placed around the back. To the right is a large pile of rubble from other earthquake-damaged buildings. Rubble is also piled up on the side of the road in the distance.

Images, UC QuakeStudies

The northern side of the Christ Church Cathedral with the cafe and store in the foreground. Shipping containers have been placed around the eastern side of the Cathedral to protect the road from falling debris. Wire fencing has also been placed around the building as a cordon. To the right, the damaged and party deconstructed tower can be seen with the missing spire which fell during the 22 February 2011 earthquake.

Images, UC QuakeStudies

An aerial photograph captioned by BeckerFraserPhotos, "The Avon River windings its way through densely pupulated housing. The Gayhurst Road bridge can be seen. The piece of land circumscribed by the loop of the river is all zoned red, as is the land to the left of the photo. On the right, most of the land is zoned green or orange".

Images, UC QuakeStudies

A photograph of the earthquake damage to the Cathedral of the Blessed Sacrament on Barbadoes Street. The tower on the right has crumbled and the masonry has fallen to the pavement below. A car has been crushed by the fallen rubble. The dome of the left tower has collapsed and the cross at the top of the building is on a lean.

Images, UC QuakeStudies

A photograph of artworks on the wall of a building between New Brighton Mall and Beresford Street. The artwork in the middle depicts a range of native birds. To the left, a section of another artwork shows a hei matau and a jester holding a sign that reads, "Nothing about us without us!". To the right there is a landscape with a message written over it.

Images, UC QuakeStudies

A photograph of a member of the Wellington Emergency Management Office Emergency Response Team climbing a ladder up the back of a house on Gloucester Street. The ladder has been placed against the house so that the ERT members can enter the building through the open window. To the right a section of the house next door has collapsed and the bricks have spilled onto the shed below.

Images, UC QuakeStudies

A photograph of the earthquake-damaged Our City O-Tautahi Building on the corner of Worcester Street and Oxford Terrace. Steel bracing has been placed against the building to secure the brick walls. The bracing is supported by large concrete blocks. Wire fences have also been placed around the bottom of the building as a cordon. Scaffolding has been erected around the tower to the right.

Images, UC QuakeStudies

A photograph of artworks on the wall of a building between New Brighton Mall and Beresford Street. The artwork in the middle depicts a range of native birds. To the left, a section of another artwork shows a hei matau and a jester holding a sign that reads, "Nothing about us without us!". To the right there is a landscape with a message written over it.

Images, UC QuakeStudies

A photograph of a section of a mural on the corner of Byron Street and Colombo Street. The section contains a palm tree. A horse is also partially visible. On the left there is the message, "Occupy love and light right here and now. We'll all meet up on Equality Street anyhow. Love light power." Below the message are a variety of hearts in red, white, and different shades of pink.

Images, UC QuakeStudies

Damage to the garden of a house in Richmond. Liquefaction is visible among the plants and on the driveway, and the driveway is badly cracked. The photographer comments, "These photos show our old house in River Rd. Water and silt have flattened the long grass in the back garden. The growth right of centre is suckers growing from the stump of a prunus tree we had felled last year. The section of fence between us and our neighbour fell down in the Sep 4 quake".

Images, UC QuakeStudies

A photograph of the Townsend Telescope in the Observatory at the Christchurch Arts Centre. In the bottom right-hand corner of the photograph is a pulley for the telescope's clock drive. This is one of the pieces that went missing when the Observatory tower collapsed in the 22 February 2011 earthquake. This image was used by Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, to identify the telescope's parts after the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph looking east down Gloucester Street from near the Manchester Street intersection. Members of the Wellington Emergency Management Office Emergency Response Team and construction workers are walking down the street. To their right is the new Press House building with many broken windows. In the foreground, the Coachman building has sustained earthquake damage to the façade. Wire fences have been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of a member of an emergency management team standing in the middle of the intersection of Manchester, High, and Lichfield Streets. In the background an excavator is sitting on top of a pile of rubble from several earthquake-damaged buildings. Other emergency management personnel are also standing on the corner of High and Manchester Streets. Behind the excavator another excavator is working to clear rubble. To the right there is a block of earthquake-damaged buildings and more building rubble to be cleared.

Images, UC QuakeStudies

Alan Hoskin, a member of the University of Canterbury's E-Learning team, in their temporary office in the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. 700 hall with Alan. The corridor has a small seminar room at the end, and our offices on the right. To the left is the open sitting and reception area; we're trying to think of ways to make use of this".

Images, UC QuakeStudies

An aerial photograph of Manchester Street near Cambridge Terrace. The photograph has been captioned by BeckerFraserPhotos, "The new Christchurch emerges - more colourful than before. The tree wrapped in high visibility is another project from artist Peter Majendie. The newly planted grass on the right hand side of the photo is on the PGC site and an adjoining site and is a CERA initiative. In the foreground of the photos the former site of St Luke's is now attractively laid out, while the splendour of the trees on the site can be fully appreciated".

Images, UC QuakeStudies

An aerial photograph of a residential area in Avonside. The photograph has been captioned by BeckerFraserPhotos, "The dominant road in this picture is Avondale Road which crosses the River Avon. To the left of this photograph is all zoned red apart from a small piece on the other side of the river. On the right-hand side of Avondale Road, some streets are zoned green although the streets closest to the river are red-zoned".

Images, UC QuakeStudies

An aerial photograph of the Christchurch CBD. The photograph has been captioned by BeckerFraserPhotos, "This photograph shows the many tall CBD buildings, with the Hotel Grand Chancellor under demolition in the centre of the photograph. The street in the foreground running up the photograph from left to right is Lichfield Street with the old Bus Exchange clearly visible".

Research papers, The University of Auckland Library

This thesis describes the management process of innovation through construction infrastructure projects. This research focuses on the innovation management process at the project level from four views. These are categorised into the separate yet related areas of: “innovation definition”, “Project time”, “project team motivation” and “Project temporary organisation”. A practical knowledge is developed for each of these research areas that enables project practitioners to make the best decision for the right type of innovation at the right phase of projects, through a capable project organisation. The research developed a holistic view on both innovation and the construction infrastructure project as two complex phenomena. An infrastructure project is a long-term capital investment, highly risky and an uncertain. Infrastructure projects can play a key role in innovation and performance improvement throughout the construction industry. The delivery of an infrastructure project is affected in most cases by critical issues of budget constraint, programme delays and safety Where the business climate is characterized by uncertainty, risk and a high level of technological change, construction infrastructure projects are unable to cope with the requirement to develop innovation. Innovation in infrastructure projects, as one of the key performance indicators (KPI) has been identified as a critical capability for performance improvement through the industry. However, in spite of the importance of infrastructure projects in improving innovation, there are a few research efforts that have developed a comprehensive view on the project context and its drivers and inhibitors for innovation in the construction industry. Two main reasons are given as the inhibitors through the process of comprehensive research on innovation management in construction. The first reason is the absence of an understanding of innovation itself. The second is a bias towards research at a firm and individual level, so a comprehensive assessment of project-related factors and their effects on innovation in infrastructure projects has not been undertaken. This study overcomes these issues by adopting as a case study approach of a successful infrastructure project. This research examines more than 500 construction innovations generated by a unique infrastructure alliance. SCIRT (Stronger Christchurch Infrastructure Rebuild Team) is a temporary alliancing organisation that was created to rebuild and recover the damaged infrastructure after the Christchurch 2011 earthquake. Researchers were given full access to the innovation project information and innovation systems under a contract with SCIRT Learning Legacy, provided the research with material which is critical for understanding innovations in large, complex alliancing infrastructure organisation. In this research, an innovation classification model was first constructed. Clear definitions have been developed for six types of construction innovation with a variety of level of novelties and benefits. The innovation classification model was applied on the SCIRT innovation database and the resultant trends and behaviours of different types of innovation are presented. The trends and behaviours through different types of SCIRT innovations developed a unique opportunity to research the projectrelated factors and their effect on the behaviour of different classified types of innovation throughout the project’s lifecycle. The result was the identification of specific characteristics of an infrastructure project that affect the innovation management process at the project level. These were categorised in four separate chapters. The first study presents the relationship between six classified types of innovation, the level of novelty and the benefit they come up with, by applying the innovation classification model on SCIRT innovation database. The second study focused on the innovation potential and limitations in different project lifecycle phases by using a logic relationship between the six classified types of innovation and the three classified phases of the SCIRT project. The third study result develops a holistic view of different elements of the SCIRT motivation system and results in a relationship between the maturity level of definition developed for innovation as one of the KPIs and a desire though the SCIRT innovation incentive system to motivate more important innovations throughout the project. The fourth study is about the role of the project’s temporary organisation that finally results in a multiple-view innovation model being developed for project organisation capability assessment in the construction industry. The result of this thesis provides practical and instrumental knowledge to be used by a project practitioner. Benefits of the current thesis could be categorized in four groups. The first group is the innovation classification model that provides a clear definition for six classified types of innovation with four levels of novelty and specifically defined outcomes and the relationship between the innovation types, novelty and benefit. The second is the ability that is provided for the project practitioner to make the best decision for the right type of innovation at the right phases of a project’s lifecycle. The third is an optimisation that is applied on the SCIRT innovation motivation system that enables the project practitioner to incentivize the right type of innovation with the right level of financial gain. This drives the project teams to develop a more important innovation instead of a simple problemsolving one. Finally, the last and probably more important benefit is the recommended multiple-view innovation model. This is a tool that could be used by a project practitioner in order to empower the project team to support innovation throughout the project.

Images, UC QuakeStudies

An aerial photograph of the Christchurch central city. The photograph has been captioned by BeckerFraserPhotos, "The central city, with the Majestic Theatre in the centre of the photograph. Lichfield Street runs from bottom left diagonally up the photograph to the top right. The City Council building is prominent in the bottom left corner and Latimer Square in the top left corner".

Images, UC QuakeStudies

An aerial photograph of the IRD Building in the Christchurch central city and the surrounding area. The photograph has been captioned by BeckerFraserPhotos, "There are many empty sites in this part of the CBD. The street running up the photograph from the left to the right is Cashel Street. The empty site left of centre with the trees is where St John's Church has been demolished. To the left of the IRD building, is the site of the CTV Building".

Images, UC QuakeStudies

A photograph of emergency management personnel walking in a line down Lichfield Street towards the intersection of Madras Street . The members in white hazmat suits are holding their hands over their heads while members of the New Zealand Army take the lead and follow from behind. Rubble from several earthquake-damaged buildings has scattered across the street to the right. Plastic fencing has been placed along the left side of the road as a cordon. In the background there are several earthquake-damaged buildings along Lichfield Street.

Research papers, University of Canterbury Library

As a result of the Canterbury earthquakes, over 60% of the concrete buildings in the Christchurch Central Business District have been demolished. This experience has highlighted the need to provide guidance on the residual capacity and repairability of earthquake-damaged concrete buildings. Experience from 2010 Chile indicates that it is possible to repair severely damaged concrete elements (see photo at right), although limited testing has been performed on such repaired components. The first phase of this project is focused on the performance of two lightly-reinforced concrete walls that are being repaired and re-tested after damage sustained during previous testing.