Search

found 1324 results

Videos, UC QuakeStudies

A video of a conversation between John Hamilton, National Controller of the Civil Defence Emergency Response, and Dr Sonia Giovinazzi, Research Fellow at the Department of Civil and Natural Resource Engineering at the University of Canterbury. Hamilton and Giovinazzi discuss the Civil Defence's response to the 22 February 2011 earthquake and the lessons that they learned.The video includes footage from the Ministry of Civil Defence (licenced under Creative Commons Attribute 3.0 New Zealand).

Videos, UC QuakeStudies

A video of an address by Peter Davie, Chief Executive of Lyttelton Port Company, at the 2012 Seismics and the City forum. The talk is about how, in today's technological and economic environment, the ability to prevent, prepare for, or quickly recover from a disaster is a critical success factor. The seismic simulations that the Port of Lyttelton ran as part of its long term development plan became a key part of the Port's emergency response, and meant that cargo kept flowing with minimal downtime.

Images, UC QuakeStudies

Members of the USAID Disaster Assistance Response Team (DART) and the New Zealand Urban Search and Rescue, breaking through the floor of a building which was severely damaged during the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of a member of the Wellington Emergency Management Office Emergency Response Team walking across Manchester Street. In the background is a block of earthquake-damaged buildings. Large sections of the buildings have collapsed and the rubble has spilled onto the street below.

Articles, UC QuakeStudies

Following the February 2011 earthquake, the Canterbury Branch of the TEU surveyed members to determine the psychological and physical impact of the earthquakes on members, in particular on their working conditions and ability to participate in consultation processes. 90 members responded, and this report gives a summary of the percentage of responses received for each survey question.

Images, UC QuakeStudies

A photograph of members of the Wellington Emergency Management Office Emergency Response Team and the Red Cross, standing on the corner of Lichfield and High Streets. In the background large piles of rubble from earthquake-damaged buildings line the street.

Research papers, University of Canterbury Library

Validation is an essential step to assess the applicability of simulated ground motions for utilization in engineering practice, and a comprehensive analysis should include both simple intensity measures (PGA, SA, etc), as well as the seismic response of a range of complex systems obtained by response history analysis. In order to enable a spectrum of complex structural systems to be considered in systematic validation of ground motion simulations in a routine fashion, an automated workflow was developed. Such a workflow enables validation of simulated ground motions in terms of different complex model responses by considering various ground motion sets and different ground motion simulation methods. The automated workflow converts the complex validation process into a routine one by providing a platform to perform the validation process promptly as a built-in process of simulation post-processing. As a case study, validation of simulated ground motions was investigated via the automated workflow by comparing the dynamic responses of three steel special moment frame (SMRF) subjected to the 40 observed and 40 simulated ground motions of 22 February 2011 Christchurch earthquake. The seismic responses of the structures are principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, the results indicate a general agreement in seismic demands obtained using the recorded and simulated ensembles of ground motions and provide further evidence that simulated ground motions can be used in code-based structural performance assessments in-place of, or in combination with, ensembles of recorded ground motions.

Videos, UC QuakeStudies

A video of the keynote-presentation by Dr Jeanne LeBlanc, Registered Psychologist, during the second plenary of the 2016 People in Disasters Conference. LeBlanc is a Registered Psychologist, specialising in Clinical Neuropsychology and Rehabilitation. She is the British Columbia Psychological Association (BCPA) Representative for the American Psychological Associate State, Territorial and Provincial Disaster Response Network, and has also been appointed as the Behavioural Health Liaison to the American Board of Disaster Medicine. The presentation is titled, "Machetes and Breadfruit: Medical disaster response challenges in unstable settings".The abstract for this presentation reads as follows: The January 2010 earthquake in Haiti resulted in a massive response to a setting which was already fraught with danger, causing a number of personal, logistical, and safety challenges to responding medical teams. This presentation will provide a first-person account of this experience from the perspective of a behavioural health professional, whose responsibility was both the overall emotional wellbeing of the medical responders, as well as those impacted by the quake. Unique 'lessons learned' by these response teams will be highlighted, and recommendations will be provided for responders considering deploying to future events in highly unstable areas.

Research papers, University of Canterbury Library

Validating dynamic responses of engineered systems subjected to simulated ground motions is essential in scrutinising the applicability of simulated ground motions for engineering demand analyses. This paper compares the responses of two 3D building models subjected to recorded and simulated ground motions scaled to the NZS1170.5 design response spectrum, in order to evaluate the applicability of simulated ground motions for use in conventional engineering practice in New Zealand. The buildings were designed according to the NZS1170.5 and physically constructed in Christchurch prior to the 2010-2011 Canterbury earthquakes. 40 recorded ground motions from the 22 February 2011 Christchurch earthquake, along with the simulated ground motions for this event from Razafindrakoto et al. (2018) are considered. The seismic responses of the structures are principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, the results indicate a general agreement in seismic demands obtained using the recorded and simulated ensembles of ground motions and provide further evidence that simulated ground motions using state-of-the-art methods can be used in code-based structural performance assessments inplace of, or in combination with, ensembles of recorded ground motions.

Images, UC QuakeStudies

Members of the Disaster Assistance Response Team outside the US headquarters in Latimer Square. Latimer Square was set up as a temporary headquarters for emergency management personnel after the 22 February 2011 earthquake.

Images, UC QuakeStudies

Members of the USAID Disaster Assistance Response Team (DART) setting up a tent in Latimer Square after their early-morning arrival in Christchurch. Latimer Square was set up as a temporary headquarters for emergency management personnel after the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of the Wellington Emergency Management Office Emergency Response Team walking down Lichfield Street. Plastic fencing and road cones have been placed along both sides of the road as cordons. Behind the fences are piles of bricks and other rubble from the buildings above.