A video clip of young people playing volleyball on Manchester Street during CityUps. CityUps was a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of a customer in the seating area of the Samo Lyttelton cafe. On the walls of the cafe are posters advertising local events.
None
On 22 February 2011, Canterbury and its largest city Christchurch experienced its second major earthquake within six months. The region is facing major economic and organisational challenges in the aftermath of these events. Approximately 25% of all buildings in the Christchurch CBD have been “red tagged” or deemed unsafe to enter. The New Zealand Treasury estimates that the combined cost of the February earthquake and the September earthquake is approximately NZ$15 billion[2]. This paper examines the national and regional economic climate prior to the event, discusses the immediate economic implications of this event, and the challenges and opportunities faced by organisations affected by this event. In order to facilitate recovery of the Christchurch area, organisations must adjust to a new norm; finding ways not only to continue functioning, but to grow in the months and years following these earthquakes. Some organisations relocated within days to areas that have been less affected by the earthquakes. Others are taking advantage of government subsidised aid packages to help retain their employees until they can make long-term decisions about the future of their organisation. This paper is framed as a “report from the field” in order to provide insight into the early recovery scenario as it applies to organisations affected by the February 2011 earthquake. It is intended both to inform and facilitate discussion about how organisations can and should pursue recovery in Canterbury, and how organisations can become more resilient in the face of the next crisis.
Text at top left reads 'Earthquake... aftershock... or "new event"... one thing remains constant...' Below is a snail with 'EQC payments' printed on its shell. Context - This is a reference to the problems that Christchurch people are having in getting payments from the EQC (Earthquake Commission) Disgruntled tradespeople who are owed hundreds of thousands of dollars by EQC are considering legal action. Remaining unpaid can mean that companies may have to consider laying people off. The Amalgamated Workers Union says delays in EQC payments for housing repair work in quake-hit Christchurch are building to a crisis point. Two versions of this cartoon are available Quantity: 2 digital cartoon(s).
A photograph of an installation on the corner of Manchester Street and Worcester Street. The installation is titled "Archrobatics", and is part of the LUXCITY event.
The September 2010 Canterbury and February 2011 Christchurch earthquakes and associated aftershocks have shown that the isolator displacement in Christchurch Women's Hospital (Christchurch City's only base-isolated structure) was significantly less than expected. Occupant accounts of the events have also indicated that the accelerations within the hospital superstructure were larger than would usually be expected within a base-isolated structure and that residual low-level shaking lasts for a longer period of time following the strong-motion of an event than for non-isolated structures.
A montage of photographs of the creation of the installation 'Tonic'. The installation is part of the LUXCITY event. Tutors: Annabel Pretty, Cesar Wagner, Peter McPherson
A photograph of an installation that forms part of the '60 Lights Market' at the LUXCITY event. Coordinators: Jeongbin Ok, Tiago Rorke, Jonathan Coates; student: Tom Hall
A photograph of a band playing to a crowd of students on Ilam fields during an annual Tea Party event. The photograph is from the 2010s.
A photograph of children running across the site of Gap Filler's 'Film in the Gap' project. On the wall behind them is a chalkboard advertising upcoming events.
In 2016, the Building (Earthquake-prone Buildings) Amendment Act 2016 was introduced to address the issue of seismic vulnerability amongst existing buildings in Aotearoa New Zealand. This Act introduced a mandatory scheme to remediate buildings deemed particularly vulnerable to seismic hazard, as recommended by the 2012 Royal Commission into the Canterbury earthquake sequence of 2010–2011. This Earthquake-prone Building (EPB) framework is unusual internationally for the mandatory obligations that it introduces. This article explores and critiques the operation of the scheme in practice through an examination of its implementation provisions and the experiences of more recent seismic events (confirmed by engineering research). This analysis leads to the conclusion that the operation of the current scheme and particularly the application of the concept of EPB vulnerability excludes large numbers of (primarily urban) buildings which pose a significant risk in the event of a significant (but expected) seismic event. As a result, the EPB scheme fails to achieve its goals and instead may create a false impression that it does so
As part of the New Zealand Archaeology Week, Clara recently gave a talk entitled, Elixirs, Ointments and Tonics: Medicine in Nineteenth Century Christchurch. This talk was part of the event, Beneath Our Feet: Archaeological Stories of Place. The talks from … Continue reading →
Decribes the new Re:Start village project in the Cashel Mall, which housing business previously located in Christchurch’s central city. Includes a directory of retailers, events, photographs, information about parking and access, and Christchurch central city news.
A video clip of children placing points on a tarpaulin map of central Christchurch. The map is part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
Since the February 22nd earthquake, an influx of displaced Christchurch residents have made North Canterbury their temporary home. Cosmo Kentish-Barnes finds out how some people have coped with this dramatic event and what locals are doing to support them.
A video clip of Ronnie van Hout's self-portrait sculpture titled Comin' Down, illuminated during CityUps. CityUps was a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of pedestrians at the intersection of Manchester, Lichfield and High Streets during CityUps. CityUps was a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of a chalkboard painted on the wall of a building. The chalkboard advertises upcoming Gap Filler events. A woman is chalking a message on the wall.
A video clip of Ronnie van Hout's self-portrait sculpture titled Comin' Down, illuminated during CityUps. CityUps was a 'city of the future for one night only', and the main event of FESTA 2014.
The November 2016 MW 7.8 Kaikōura Earthquake initiated beneath the North Culverden basin on The Humps fault and propagated north-eastwards, rupturing at least 17 faults along a cumulative length of ~180 km. The geomorphic expression of The Humps Fault across the Emu Plains, along the NW margin of Culverden basin, comprises a series of near-parallel strands separated by up to 3 km across strike. The various strands strike east to east-northeast and have been projected to mainly dip steeply to the south in seismic data (~80°). In this area, the fault predominantly accommodates right-lateral slip, with uplift and subsidence confined to releasing and restraining bends and step-overs at a range of scales. The Kaikōura event ruptured pre-existing fault scarps along the Emu Plains, which had been partly identified prior to the earthquake. Geomorphology and faulting expression of The Humps Fault on The Emu Plains was mapped, along with faulting related structures which did not rupture in the 2016 earthquake. Fault ruptures strands are combined into sections and the kinematic deformation of sections analysed to provide a moment tensor fault plane solution. This fault plane solution is consistent with the regional principal horizontal shortening direction (PHS) of ~115°, similar to seismic focal mechanism solutions of some of the nearby aftershocks of the Kaikōura earthquake, and similar to the adjacent Hope Fault. To constrain the timing of paleoseismic events, a trench was excavated across the fault where it crossed a late Quaternary alluvial fan. Mapping of stratigraphy exposed in the trench walls, and dating of variably deformed strata, constrains the pre-historic earthquake event history at the trench site. The available data provides evidence for at least three paleo-earthquakes within the last 15.1 ka, with a possible fourth (penultimate) event. These events are estimated to have occurred at 7.7-10.3 ka, 10.3-14.8 ka, and one or more events that are older than ~15.1 ka. Some evidence suggests an additional penultimate event between 1850 C.E and 7.7 ka. Time-integrated slip-rates at three locations on the fault are measured using paleo-channels as piercing points. These sites give horizontal slip rates of 0.57 ± 0.1 mm/year, 0.49 ± 0.1 mm/year and one site constrains a minimum of between 0.1 - 0.4 mm/year. Two vertical slip-rates are calculated to be constrained to a maximum of 0.2 ± 0.02 mm/year at one site and between 0.02 and 0.1 mm/year at another site. Prior to this study, The Humps fault had only been partially documented in reconnaissance level mapping in the district, and no previous paleoseismic or slip rate data had been reported. This project has provided a detailed fault zone tectonic geomorphic map and established new slip-rate and paleoseismic data. The results highlight that The Humps fault plays an important role in regional seismicity and in accommodating plate boundary deformation across the North Canterbury region.
This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.
This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.
A photograph of an installation on the corner of Manchester Street and Gloucester Street. The installation is titled "60 Lights Market", and is part of the LUXCITY event.
A photograph of CPIT students digging on an empty site left by a demolished building. The site is being cleared in preparation for the 'Words of Hope' event.
A photograph of an installation on the corner of Gloucester Street and Colombo Street. The installation is titled "Etch-a-Sketch", and is part of the LUXCITY event.
A photograph of crowds at the LUXCITY event. The photograph shows an installation on Worcester Street, with the new Press building in the background. The installation is titled "Murmur".
Beverly Forrester farms near Harden which is down the road from Hanmer Springs. Road damage means she's cut off from the outside world, apart from her phone Beverly was caught up in the Christchurch earthquake, so the events of the last 24hrs have been quite trying for her.
A wide range of information about Council business and services, bylaws, public activities. Includes media releases and information about events and facilities in Christchurch. Earthquake related information can be found in the archived instances from September 2010-
Christchurch moteliers say this has been the hardest winter since the Canterbury earthquakes - and they are blaming both AirBnB and a lack of events. RNZ Christchurch reporter Logan Church spoke with Comfort Inn motel owner, Bob Cringle, about the state of the sector.