A car on Rowses Road has its wheels embedded in liquefaction. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
A photograph of the earthquake damage to a building on the corner of Hereford and Madras Street. Sections of the façade have crumbled, bricks spilling onto the road in front. Wire fencing has been used to block off half of Madras Street. In the background, emergency management personnel are working through the rubble of the CTV building site. A digger and a crane are parked on the site.
A truck stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
A photograph of a map used by emergency management personnel to inspect buildings after the 22 February 2011 earthquake. The map is of central Christchurch. Almost all of the blocks outside four streets (Moorhouse Avenue, Oxford Terrace, Kilmore Street, and Barbadoes Street) have been highlighted in yellow. Latimer Square has also been highlighted. A message written at the top of the map reads, "Query pile checked by dogs".
Damage to a residential property in Richmond. The brick wall of the garage has collapse inward, and the roof fallen in on top of it. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The neighbours behind us used the kayak to get in to their house - it's flooded by Dudley Creek which runs behind the block, plus major liquefaction. Our old garage provides a good spot to park it".
A truck stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, and a digger is attempting to dig the truck out. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
A photograph of a member of an emergency management team standing in the middle of the intersection of Manchester, High, and Lichfield Streets. In the background an excavator is sitting on top of a pile of rubble from several earthquake-damaged buildings. Other emergency management personnel are also standing on the corner of High and Manchester Streets. Behind the excavator another excavator is working to clear rubble. To the right there is a block of earthquake-damaged buildings and more building rubble to be cleared.
A car stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, lifting the back wheels off the ground. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
A truck stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, and a digger is attempting to dig the truck out. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
A photograph of a map used by emergency management personnel to inspect buildings after the 22 February 2011 earthquake. The map is of the block bordered by Barbadoes Street, Worcester Street, Gloucester Street, and Fitzgerald Avenue. Many of the buildings have been highlighted in blue, with some smaller buildings highlighted in orange. Numbers and messages have been written on the map with biro. One of the messages reads, "forced entry to garage at back". A few of the buildings have also been crossed off with pen.
A car stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, lifting the back wheels off the ground. A line of other vehicles drive around the partially-submerged car. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
A car stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, lifting the back wheels off the ground. A line of other vehicles drive around the partially-submerged car. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
An aerial photograph of the Copthorne Hotel on Colombo Street. The photograph has been captioned by BeckerFraserPhotos, "When the PricewaterhouseCoopers building is demolished, the Copthorne Central Hotel will be alone on the block. Oxford on the Avon and Plunket House are also gone from Oxford Terrace, and on the other side of the river is the demolition site of the PGC building where 18 people died".
Damaged buildings on Manchester Street. The facades have fallen, crushing the awnings below. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones. Heading first along Manchester Street, buildings that were already heavily damaged were now completely written off".
An UnReinforced clay brick Masonry (URM) chimney is composed of a cantilever URM appendage above a roofline and is considered one of the most earthquake prone non-structural compo¬nents within vintage URM and timber-framed buildings. Observations from past earthquakes including the 1992 Big Bear City earthquake, 1994 Northridge earthquake, 2001 Nisqually earthquake, 2010/2011 Canterbury earthquakes, 2012 Northern Italy earthquakes, and 2014 South Napa earthquake served repeatedly as a reminder of the hazard induced by URM chimneys. The observed failure types included several cases where the adopted retrofit techniques were not adequate to effectively secure chimneys dur¬ing the earthquake. Data collected during the 2010/2011 post-earthquake building assessments in Christchurch and insur¬ance claims are reported herein. Five full-scale solid clay brick URM chimneys which replicated the most encountered geometrical and construction characteristics were subjected to shake table testing. Two chim¬ney samples were representative of the as-built conditions, while three samples were retrofitted using two different configurations of Near-Surface-Mounted (NSM) Carbon-Fibre-Reinforced-Polymer (CFRP) strips and post-tensioning techniques. The adopted securing techniques allowed an increase in seismic acceleration capacity of more than five times for chimneys constructed with ultra-weak mortar and more than twice for chimneys built with weak mortar. http://www.16ibmac.com/
People walk and drive along Manchester Street shortly after the 22 February earthquake. Bricks from collapsed buildings litter the road. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones. Heading first along Manchester Street, buildings that were already heavily damaged were now completely written off".
Dust rises from fallen buildings on Tuam Street shortly after the 22 February earthquake. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed. Above is looking along Tuam Street to the corner of Manchester Street where a number of buildings have just collapsed. This is 1pm and the sky was previously reasonably clear - this is all dust. From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones".
People walk down Colombo Street past collapsed buildings shortly after the 22 February earthquake. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones. Heading first along Manchester Street, buildings that were already heavily damaged were now completely written off. We couldn't get much further down Manchester Street so eventually made it to Colombo Street".
Following the 2010/2011 Canterbury earthquakes a detailed campaign of door to door assessments was conducted in a variety of areas of Christchurch to establish the earthquake performance of residential dwellings having masonry veneer as an external cladding attached to a lightweight timber framing system. Specifically, care was taken to include regions of Christchurch which experienced different levels of earthquake shaking in order to allow comparison between the performance of different systems and different shaking intensities. At the time of the inspections the buildings in the Christchurch region had been repeatedly subjected to large earthquakes, presenting an opportunity for insight into the seismic performance of masonry veneer cladding. In total just under 1100 residential dwellings were inspected throughout the wider Christchurch area, of which 24% were constructed using the older nail-on veneer tie system (prior to 1996) and 76% were constructed using screw fixed ties to comply with the new 1996 standards revision (post-1996), with 30% of all inspected houses being of two storey construction. Of the inspected dwellings 27% had some evidence of liquefaction, ground settlement or lateral spreading. Data such as damage level, damage type, crack widths, level of repair required and other parameters were collected during the survey. A description of the data collection processes and a snapshot of the analysis results are presented within. http://15ibmac.com/home/
Following the 22 February 2011 Christchurch earthquake a comprehensive damage survey of the unreinforced masonry (URM) building stock of Christchurch city, New Zealand was undertaken. Because of the large number of aftershocks associated with both the 2011 Christchurch earthquake and the earlier 4 September 2010 Darfield earthquake, and the close proximity of their epicentres to Christchurch city, this earthquake sequence presented a unique opportunity to assess the performance of URM buildings and the various strengthening methods used in New Zealand to increase the performance of these buildings in earthquakes. Because of the extent of data that was collected, a decision was made to initially focus exclusively on the earthquake performance of URM buildings located in the central business district (CBD) of Christchurch city. The main objectives of the data collection exercise were to document building characteristics and any seismic strengthening methods encountered, and correlate these attributes with observed earthquake damage. In total 370 URM buildings in the CBD were surveyed. Of the surveyed buildings, 62% of all URM buildings had received some form of earthquake strengthening and there was clear evidence that installed earthquake strengthening techniques in general had led to reduced damage levels. The procedure used to collect and process information associated with earthquake damage, general analysis and interpretation of the available survey data for the 370 URM buildings, the performance of earthquake strengthening techniques, and the influence of earthquake strengthening levels on observed damage are reported within. http://15ibmac.com/home/
People gather at the corner of Colombo and St Asaph Streets shortly after the 22 February earthquake. A building has collapsed, and bricks and rubble litter the street. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones. Heading first along Manchester Street, buildings that were already heavily damaged were now completely written off. We couldn't get much further down Manchester Street so eventually made it to Colombo Street".
This project looks at how destroyed architecture, although physically lost, fundamentally continues to exist within human memories as a non-physical entity. The site chosen is Avonside Girls’ High School in Christchurch, New Zealand, a school heavily damaged during the February 22nd earthquake in 2011. The project focuses on the Main Block, a 1930s masonry building which had always been a symbol for the school and its alumni. The key theories relevant to this are studies on non-material architecture and memory as these subjects investigate the relationship between conceptual idea and the triggering of it. This research aims to study how to fortify a thought-based architecture against neglect, similar to the retrofitting of physical structures. In doing so, the importance of the emotive realm of architecture and the idea behind a building (as opposed to the built component itself) is further validated, promoting more broadminded stances regarding the significance of the idea over the object. A new method for disaster recovery and addressing trauma from lost architecture is also acquired. Factors regarding advanced structural systems and programmes are not covered within the scope of this research because the project instead explores issues regarding the boundaries between the immaterial and material. The project methodology involves communicating a narrative derived from the memories alumni and staff members have of the old school block. The approach for portraying the narrative is based on a list of strategies obtained from case studies. The final product of the research is a new design for the high school, conveyed through a set of atmospheric drawings that cross-examines the boundaries between the physical and non-physical realms by representing the version of the school that exists solely within memories.
Cars crushed between the collapsed levels of the Smiths City car park. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones ... eventually made it to Colombo Street where we slowly crawled past the horrific sight of the Colombo Street Smiths City over-bridge car park. Layers had collapsed onto each other and cars were sticking out of the gaps. Hopefully if anyone was inside they would have hit the ground and would be safe under the support of the cars either side of them".
Cars crushed between the collapsed levels of the Smiths City car park. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones ... eventually made it to Colombo Street where we slowly crawled past the horrific sight of the Colombo Street Smiths City over-bridge car park. Layers had collapsed onto each other and cars were sticking out of the gaps. Hopefully if anyone was inside they would have hit the ground and would be safe under the support of the cars either side of them".
The Catholic Cathedral of the Blessed Sacrament is a category 1 listed heritage building constructed largely of unreinforced stone masonry, and was significantly damaged in the recent Canterbury earthquakes. The building experienced ground shaking in excess of its capacity leading to block failures and partial collapse of parts of the building, which left the building standing but still posing a significant hazard. In this paper we discuss the approach to securing the building, and the interaction of the structural, heritage and safety demands involved in a dynamic seismic risk environment. We briefly cover the types of failures observed and the behaviour of the structure, and investigate the performance of both strengthened and un-strengthened parts of the building. Seismic strengthening options are investigated at a conceptual level. We draw conclusions as to how the building performed in the earthquakes, comment on the effectiveness of the strengthening and securing work and discuss the potential seismic strengthening methods.
Heavy traffic at the corner of Moorhouse Avenue and Manchester Street as people attempt to leave the city centre shortly after the 22 February earthquake. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones ... As we got to Moorhouse Avenue, we found we had to quickly drive underneath [the Colombo Street overbridge]and carry on down to Brougham Street as the bridge was being closed at that moment. From Brougham, we headed back up towards Madras. The traffic lights were out and the intersection was chaos. Over the next couple of hours, we continued crawling through heavy traffic. Impressively, everyone was very orderly despite the feeling of panic and the continuing aftershocks. We chatted to others in other vehicles to exchange news and stopped to speak to a lady that had broken down following water in the engine after having driven hrough floods".
Creativity that is driven by a need for physical or economic survival, which disasters are likely to inspire, raises the question of whether such creativity fits with conventional theories and perspectives of creativity. In this paper we use the opportunity afforded by the 2010-2013 Christchurch, New Zealand earthquakes to follow and assess the creative practices and responses of a number of groups and individuals. We use in-depth interviews to tease out motivations and read these against a range of theoretical propositions about creativity. In particular, we focus on the construct of “elite panic” and the degree to which this appeared to be evident in the Christchurch earthquakes context. Bureaucratic attempts to control or limit creativity were present but they did not produce a completely blanket dampening effect. Certain individuals and groups seemed to be pre-equipped to navigate or ignore potential blocks to creativity. We argue, using Geir Kaufmann’s novelty-creativity matrix and aspects of Teresa Amabile’s and Michael G. Pratt’s revised componential theory of creativity that a special form of disaster creativity does exist.
Background: Up to 6 years after the 2011 Christchurch earthquakes, approximately one-third of parents in the Christchurch region reported difficulties managing the continuously high levels of distress their children were experiencing. In response, an app named Kākano was co-designed with parents to help them better support their children’s mental health. Objective: The objective of this study was to evaluate the acceptability, feasibility, and effectiveness of Kākano, a mobile parenting app to increase parental confidence in supporting children struggling with their mental health. Methods: A cluster-randomized delayed access controlled trial was carried out in the Christchurch region between July 2019 and January 2020. Parents were recruited through schools and block randomized to receive immediate or delayed access to Kākano. Participants were given access to the Kākano app for 4 weeks and encouraged to use it weekly. Web-based pre- and postintervention measurements were undertaken. Results: A total of 231 participants enrolled in the Kākano trial, with 205 (88.7%) participants completing baseline measures and being randomized (101 in the intervention group and 104 in the delayed access control group). Of these, 41 (20%) provided full outcome data, of which 19 (18.2%) were for delayed access and 21 (20.8%) were for the immediate Kākano intervention. Among those retained in the trial, there was a significant difference in the mean change between groups favoring Kākano in the brief parenting assessment (F1,39=7, P=.012) but not in the Short Warwick-Edinburgh Mental Well-being Scale (F1,39=2.9, P=.099), parenting self-efficacy (F1,39=0.1, P=.805), family cohesion (F1,39=0.4, P=.538), or parenting sense of confidence (F1,40=0.6, P=.457). Waitlisted participants who completed the app after the waitlist period showed similar trends for the outcome measures with significant changes in the brief assessment of parenting and the Short Warwick-Edinburgh Mental Well-being Scale. No relationship between the level of app usage and outcome was found. Although the app was designed with parents, the low rate of completion of the trial was disappointing. Conclusions: Kākano is an app co-designed with parents to help manage their children’s mental health. There was a high rate of attrition, as is often seen in digital health interventions. However, for those who did complete the intervention, there was some indication of improved parental well-being and self-assessed parenting. Preliminary indications from this trial show that Kākano has promising acceptability, feasibility, and effectiveness, but further investigation is warranted. Trial Registration: Australia New Zealand Clinical Trials Registry ACTRN12619001040156; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=377824&isReview=true