Search

found 310 results

Research Papers, Lincoln University

Prior to the devastating 2010 and 2011 earthquakes, parts of the CBD of Christchurch, New Zealand were undergoing revitalisation incorporating aspects of adaptive reuse and gentrification. Such areas were often characterised by a variety of bars, restaurants, and retail outlets of an “alternative” or “bohemian” style. These early 20th century buildings also exhibited relatively low rents and a somewhat chaotic and loosely planned property development approach by small scale developers. Almost all of these buildings were demolished following the earthquakes and a cordon placed around the CBD for several years. A paper presented at the ERES conference in 2013 presented preliminary results, from observation of post-earthquake public meetings and interviews with displaced CBD retailers. This paper highlighted a strongly held fear that the rebuild of the central city, then about to begin, would result in a very different style and cost structure from that which previously existed. As a result, permanent exclusion from the CBD of the types of businesses that previously characterised the successfully revitalised areas would occur. Five years further on, new CBD retail and office buildings have been constructed, but large areas of land between them remain vacant and the new buildings completed are often having difficulty attracting tenants. This paper reports on the further development of this long-term Christchurch case study and examines if the earlier predictions of the displaced retailers are coming true, in that a new CBD that largely mimics a suburban mall in style and tenancy mix, inherently loses some of its competitive advantage?

Research papers, The University of Auckland Library

Terminus calving of icebergs is a common mass-loss mechanism from water-terminating glaciers globally, including the lake-calving glaciers in New Zealand’s central Southern Alps. Calving rates can increase dramatically in response to increases in ice velocity and/or retreat of the glacier margin. Here, we describe a large calving event (c. 4.5 × 106 m3) observed at Tasman Glacier, which initiated around 30 min after the MW 6.2 Christchurch earthquake of 22 February 2011. The volume of this calving event was equalled or exceeded only once in a subsequent 13-month-long study. While the temporal association with the earthquake remains intriguing, the effects of any preconditioning factors remain unclear.

Research Papers, Lincoln University

Successful urban regeneration projects generate benefits that are realised over a much longer timeframe than normal market developments and benefits well beyond those that can be uplifted by a market developer. Consequently there is substantial evidence in the literature that successful place-making and urban regeneration projects are usually public-private partnerships and involve a funder, usually local or central government, willing to contribute ‘patient’ capital. Following the 2010 and 2011 earthquakes that devastated the centre of Christchurch, there was an urgent need to rebuild and revitalise the heart of the city, and increasing the number of people living in or near the city centre was seen as a key ingredient of that. In October 2010, an international competition was launched to design and build an Urban Village, a project intended to stimulate renewed residential development in the city. The competition attracted 58 entrants from around world, and in October 2013 the winning team was chosen from four finalists. However the team failed to secure sufficient finance, and in November 2015 the Government announced that the development would not proceed. The Government was unwilling or unable to recognise that an insistence on a pure market approach would not deliver the innovative sustainable village asked for in the competition brief, and failed to factor in the opportunity cost to government, local government, local businesses and the wider Christchurch community of delaying by many years the residential development of the eastern side of the city. As a result, the early vision of the vitality that a thriving residential neighbourhood would bring to the city has not yet been realised.

Research Papers, Lincoln University

The September and February earthquakes were terrifying and devastating. In February, 185 people were killed (this number excludes post earthquake related deaths) and several thousand injured. Damage to infrastructure above and below ground in and around Christchurch was widespread and it will take many years and billions of dollars to rebuild. The ongoing effects of the big quakes and aftershocks are numerous, with the deepest impact being on those who lost family and friends, their livelihoods and homes. What did Cantabrians do during the days, weeks and months of uncertainty and how have we responded? Many grieved, some left, some stayed, some arrived, many shovelled (liquefaction left thousands of tons of silt to be removed from homes and streets), and some used their expertise or knowledge to help in the recovery. This book highlights just some of the projects staff and students from The Faculty of Environment, Society and Design have been involved in from September 2010 to October 2012. The work is ongoing and the plan is to publish another book to document progress and new projects.

Research papers, The University of Auckland Library

Churches are an important part of New Zealand's historical and architectural heritage. Various earthquakes around the world have highlighted the significant seismic vulnerability of religious buildings, with the extensive damage that occurred to stone and clay-brick unreinforced masonry churches after the 2010-2011 Canterbury earthquakes emphasising the necessity to better understand this structural type. Consequently, a country-wide inventory of unreinforced masonry churches is here identified. After a bibliographic and archival investigation, and a 10 000 km field trip, it is estimated that currently 297 unreinforced masonry churches are present throughout New Zealand, excluding 12 churches demolished in Christchurch because of heavy damage sustained during the Canterbury earthquake sequence. The compiled database includes general information about the buildings, their architectural features and structural characteristics, and any architectural and structural transformations that have occurred in the past. Statistics about the occurrence of each feature are provided and preliminary interpretations of their role on seismic vulnerability are discussed. The list of identified churches is reported in annexes, supporting their identification and providing their address.

Research papers, The University of Auckland Library

The author followed five primary (elementary) schools over three years as they responded to and began to recover from the 2010–2011 earthquakes in and around the city of Christchurch in the Canterbury region of New Zealand. The purpose was to capture the stories for the schools themselves, their communities, and for New Zealand’s historical records. From the wider study, data from the qualitative interviews highlighted themes such as children’s responses or the changing roles of principals and teachers. The theme discussed in this article, however, is the role that schools played in the provision of facilities and services to meet (a) physical needs (food, water, shelter, and safety); and (b) emotional, social, and psychological needs (communication, emotional support, psychological counseling, and social cohesion)—both for themselves and their wider communities. The role schools played is examined across the immediate, short-, medium-, and long-term response periods before being discussed through a social bonding theoretical lens. The article concludes by recommending stronger engagement with schools when considering disaster policy, planning, and preparation http://www.schoolcommunitynetwork.org/SCJ.aspx

Research papers, University of Canterbury Library

Research indicates that aside from the disaster itself, the next major source of adverse outcomes during such events, is from errors by either the response leader or organisation. Yet, despite their frequency, challenge, complexity, and the risks involved; situations of extreme context remain one of the least researched areas in the leadership field. This is perhaps surprising. In the 2010 and 2011 (Christchurch) earthquakes alone, 185 people died and rebuild costs are estimated to have been $40b. Add to this the damage and losses annually around the globe arising from natural disasters, major business catastrophes, and military conflict; there is certainly a lot at stake (lives, way of life, and our well-being). While over the years, much has been written on leadership, there is a much smaller subset of articles on leadership in extreme contexts, with the majority of these focusing on the event rather than leadership itself. Where leadership has been the focus, the spotlight has shone on the actions and capabilities of one person - the leader. Leadership, however, is not simply one person, it is a chain or network of people, delivering outcomes with the support of others, guided by a governance structure, contextualised by the environment, and operating on a continuum across time (before, during, and after an event). This particular research is intended to examine the following: • What are the leadership capabilities and systems necessary to deliver more successful outcomes during situations of extreme context; • How does leadership in these circumstances differ from leadership during business as usual conditions; • Lastly, through effective leadership, can we leverage these unfortunate events to thrive, rather than merely survive?

Videos, UC QuakeStudies

A video of a presentation by Professor David Johnston during the fourth plenary of the 2016 People in Disasters Conference. Johnston is a Senior Scientist at GNS Science and Director of the Joint Centre for Disaster Research in the School of Psychology at Massey University. The presentation is titled, "Understanding Immediate Human Behaviour to the 2010-2011 Canterbury Earthquake Sequence, Implications for injury prevention and risk communication".The abstract for the presentation reads as follows: The 2010 and 2011 Canterbury earthquake sequences have given us a unique opportunity to better understand human behaviour during and immediately after an earthquake. On 4 September 2010, a magnitude 7.1 earthquake occurred near Darfield in the Canterbury region of New Zealand. There were no deaths, but several thousand people sustained injuries and sought medical assistance. Less than 6 months later, a magnitude 6.2 earthquake occurred under Christchurch City at 12:51 p.m. on 22 February 2011. A total of 182 people were killed in the first 24 hours and over 7,000 people injured overall. To reduce earthquake casualties in future events, it is important to understand how people behaved during and immediately after the shaking, and how their behaviour exposed them to risk of death or injury. Most previous studies have relied on an analysis of medical records and/or reflective interviews and questionnaire studies. In Canterbury we were able to combine a range of methods to explore earthquake shaking behaviours and the causes of injuries. In New Zealand, the Accident Compensation Corporation (a national health payment scheme run by the government) allowed researchers to access injury data from over 9,500 people from the Darfield (4 September 2010) and Christchurch (22 February 2011 ) earthquakes. The total injury burden was analysed for demography, context of injury, causes of injury, and injury type. From the injury data inferences into human behaviour were derived. We were able to classify the injury context as direct (immediate shaking of the primary earthquake or aftershocks causing unavoidable injuries), and secondary (cause of injury after shaking ceased). A second study examined people's immediate responses to earthquakes in Christchurch New Zealand and compared responses to the 2011 earthquake in Hitachi, Japan. A further study has developed a systematic process and coding scheme to analyse earthquake video footage of human behaviour during strong earthquake shaking. From these studies a number of recommendations for injury prevention and risk communication can be made. In general, improved building codes, strengthening buildings, and securing fittings will reduce future earthquake deaths and injuries. However, the high rate of injuries incurred from undertaking an inappropriate action (e.g. moving around) during or immediately after an earthquake suggests that further education is needed to promote appropriate actions during and after earthquakes. In New Zealand - as in US and worldwide - public education efforts such as the 'Shakeout' exercise are trying to address the behavioural aspects of injury prevention.

Research papers, University of Canterbury Library

The use of post-earthquake cordons as a tool to support emergency managers after an event has been documented around the world. However, there is limited research that attempts to understand the use, effectiveness, inherent complexities, impacts and subsequent consequences of cordoning once applied. This research aims to fill that gap by providing a detailed understanding of first, the cordons and associated processes, and their implications in a post-earthquake scenario. We use a qualitative method to understand cordons through case studies of two cities where it was used in different temporal and spatial scales: Christchurch (2011) and Wellington (Kaikōura earthquake 2016), New Zealand. Data was collected through 21 expert interviews obtained through purposive and snowball sampling of key informants who were directly or indirectly involved in a decision-making role and/or had influence in relation to the cordoning process. The participants were from varying backgrounds and roles i.e. emergency managers, council members, business representatives, insurance representatives, police and communication managers. The data was transcribed, coded in Nvivo and then grouped based on underlying themes and concepts and then analyzed inductively. It is found that cordons are used primarily as a tool to control access for the purpose of life safety and security. But cordons can also be adapted to support recovery. Broadly, it can be synthesized and viewed based on two key aspects, ‘decision-making’ and ‘operations and management’, which overlap and interact as part of a complex system. The underlying complexity arises in large part due to the multitude of sectors it transcends such as housing, socio-cultural requirements, economics, law, governance, insurance, evacuation, available resources etc. The complexity further increases as the duration of cordon is extended.

Research papers, The University of Auckland Library

Industrial steel storage pallet racking systems are used extensively worldwide to store goods. Forty percent of all goods are stored on storage racks at some time during their manufactureto- consumption life. In 2017, goods worth USD 16.5 billion were carried on cold-formed steel racking systems in seismically active regions worldwide. Historically, these racks are particularly vulnerable to collapse in severe earthquakes. In the 2010/2011 Christchurch earthquakes, around NZD 100 million of pallet racking stored goods were lost, with much greater associated economic losses due to disruptions to the national supply chain. A novel component, the friction slipper baseplate, has been designed and developed to very significantly improve the seismic performance of a selective pallet racking system in both the cross-aisle and the down-aisle directions. This thesis documents the whole progress of the development of the friction slipper baseplate from the design concept development to experimental verification and incorporation into the seismic design procedure for selective pallet racking systems. The test results on the component joint tests, full-scale pull-over and snap-back tests and fullscale shaking table tests of a steel storage racking system are presented. The extensive experimental observations show that the friction slipper baseplate exhibits the best seismic performance in both the cross-aisle and the down-aisle directions compared with all the other base-connections tested. It protects the rack frame and concrete floor from damage, reduces the risk of overturning in the cross-aisle direction, and minimises the damage at beam-end connectors in the down-aisle direction, without sustaining damage to the connection itself. Moreover, this high level of seismic performance can be delivered by a simple and costeffective baseplate with almost no additional cost. The significantly reduced internal force and frame acceleration response enable the more cost-effective and safer design of the pallet racking system with minimal extra cost for the baseplate. The friction slipper baseplate also provides enhanced protection to the column base from operational impact damage compared with other seismic resisting and standard baseplates.