Video of Rosie Belton's earthquake story, captured by the UC QuakeBox project.
Slides from the presentation by Dr Marlene Villeneuve (Department of Geological Sciences) on "Towards Understanding Mechanisms of Failure in the Port Hills and Banks Peninsula".
None
A presentation by Dr Deirdre Hart at the New Zealand Coastal Science 20th Annual Conference. The presentation is titled, "Coastal Quakes: New Zealand's underrated hazard complex".
The 4 September 2010 Darfield and 22 February 2011 Christchurch earthquakes caused significant damage to Christchurch and surrounding suburbs as a result of the widespread liquefaction and lateral spreading that occurred. Ground surveying-based field investigations were conducted following these two events in order to measure permanent ground displacements in areas significantly affected by lateral spreading. Data was analysed with respect to the distribution of lateral spreading vs. distance from the waterway, and the failure patterns observed. Two types of failure distribution patterns were observed, a typical distributed pattern and an atypical block failure. Differences in lateral spreading measurements along adjacent banks of the Avon River in the area of Dallington were also examined. The spreading patterns between the adjacent banks varied with the respective river geometry and/or geotechnical conditions at the banks.
A photograph captioned by BeckerFraserPhotos, "The clock tower of Science Alive, formerly the Christchurch Railway Station, on Moorhouse Road. The clock has stopped at 4.36 am on 4 September 2010 and has been left that way".
Novel Gel-push sampling was employed to obtain high quality samples of Christchurch sands from the Central Business District, at sites where liquefaction was observed in 22 February 2011, and 13 June 2011 earthquakes. The results of cyclic triaxial testing on selected undisturbed specimens of typical Christchurch sands are presented and compared to empirical procedures used by practitioners. This comparison suggests cyclic triaxial data may be conservative, and the Magnitude Scaling Factor used in empirical procedures may be unconservative for highly compressible soils during near source moderate to low magnitude events. Comparison to empirical triggering curves suggests the empirical method generally estimates the cyclic strength of Christchurch sands within a reasonable degree of accuracy as a screening evaluation tool for liquefaction hazard, however for sands with moderate to high fines content it may be significantly unconservative, highlighting the need for high quality sampling and testing on important projects where seismic performance is critical.
An earthquake engineer says designing buildings to resist earthquakes is as much an art as it is a science and you can never make a structure completely quake-proof.
A reconnaissance report on the 4 September 2010 earthquake. The report was compiled by a team from the US National Science Foundation-sponsored Geotechnical Extreme Events Reconnaissance (GEER) Association.
Photograph captioned by Fairfax, "Clock tower at the old railway station, now Science Alive, stopped at time of the earthquake and won't be fixed till after shocks stop".
A reconnaissance report on the 22 February 2011 earthquake. The report was compiled by a team from the US National Science Foundation-sponsored Geotechnical Extreme Events Reconnaissance (GEER) Association.
Photograph captioned by Fairfax, "Clock tower at the old railway station, now Science Alive, stopped at time of the earthquake and won't be fixed till after shocks stop".
Time stands still on the Science Museum clock tower as a poignant reminder of the moment the trembler struck Christchurch in the early hours of Saturday 4 September 2010.
Time stands still on the Science Museum clock tower as a poignant reminder of the moment the trembler struck Christchurch in the early hours of Saturday 4 September 2010.
Time stands still on the Science Museum clock tower as a poignant reminder of the moment the trembler struck Christchurch in the early hours of Saturday 4 September 2010.
A photograph captioned by BeckerFraserPhotos, "The clock tower of Science Alive, formerly the Christchurch Railway Station, on Moorhouse Road. The clock has stopped at 4.36 am on 4 September 2010 and has been left that way".
A zip file of an interactive 360-degree panoramic photograph in HTML5 format. The photograph was taken at the University of Canterbury, between von Haast and the Science Lecture Theatres on 4 January 2014.
A video of excavators demolishing the former railway station on Moorhouse Avenue. The building was only moderately damaged during the 22 February 2011 earthquake, but repair work was deemed too costly for the co-owner, Science Alive!.
Slides from the presentation by Professor Mark Billinghurst (HITLabNZ) on "Using Augmented Reality to Commemorate Christchurch".
This report provides information on the locations and character of active geological faults and folds in Ashburton District. The faults are mapped at a district scale and the information is intended to highlight areas where there is a risk of permanent fault movement at the ground surface, and where more detailed investigations should be done if development is proposed in that area (depending on the potential activity of the fault and the type of development proposed). See Object Overview for background and usage information. Most of the faults and folds identified at the ground surface in Ashburton District are in rural or very sparsely populated areas. In addition, most of the faults have relatively long recurrence intervals (long-term average time between fault movements) in the order of several thousand years. Following the Ministry for the Environment Active Fault Guidelines, normal residential development would be allowed on or near faults with recurrence intervals this long. There are no recommendations associated with this report. The information in the report will be reviewed as required, after the remaining district reports are completed in the region.
This report assesses issues and options for preparing an earthquake hazard and risk assessment programme for Canterbury. It outlines investigation options and associated costs in order to better understand Canterbury's earthquake hazard and risk. Although earthquake hazard and risk information needs and investigation priorities within Canterbury have changed over the past 15 years, the majority of the report’s recommended components have been undertaken to some degree either by Environment Canterbury or other organisations. See Object Overview for background and usage information.
The previously unknown Greendale Fault ruptured to the ground surface, causing up to 5 metres horizontal and 1 metre vertical permanent offset of the ground, during the September 2010 Darfield (Canterbury) earthquake. Environment Canterbury commissioned GNS Science, with help from the University of Canterbury, to define a fault avoidance zone and to estimate the fault recurrence interval. There is little evidence for past movement on the fault in the past 16,000 years. However, because of the uncertainties involved, a conservative approach was taken and the fault has been categorised as a Recurrence Interval Class IV fault (a recurrence interval of between 5,000 and 10,000 years). A PhD study by a University of Canterbury student will work towards refining the Recurrence Interval Class over the next three years. Taking a risk-based approach, the Ministry for the Environment Active Fault Guidelines recommend that normal residential development be allowed within the fault avoidance zone for faults of this Recurrence Interval Class, but recommends restrictions for larger community buildings or facilities with post-disaster functions. The report is assisting Selwyn District Council in granting consents for rebuilding houses on or near the Greendale Fault that were damaged by permanent distortion of the ground due to the fault rupture in the September 2010 earthquake. The report provides specific recommendations for building on or close to the Greendale Fault, which are being implemented by Selwyn District Council. See Object Overview for background and usage information.
This study updated the 1999 Earthquake hazard and risk assessment study Stage 1 Part B: Probabilistic seismic hazard assessment and Earthquake scenarios for the Canterbury region, and historic earthquakes in Christchurch report. It incorporated new fault data, a new distributed seismicity model and new methods for estimating Modified Mercalli intensities. See Object Overview for background and usage information.
This report provides information on the locations and character of active geological faults and folds in Mackenzie District. The faults are mapped at a district scale and the information is intended to highlight areas where there is a risk of fault movement, and where more detailed investigations should be done if development is proposed in that area(depending on the potential activity of the fault and the type of development proposed). Most of the faults and folds identified at the ground surface in Mackenzie District are in rural or very sparsely populated areas. In addition, most of the faults have relatively long recurrence intervals (long-term average time between fault movements) in the order of several thousand years. Following the Ministry for the Environment Active Fault Guidelines, normal residential development would be allowed on or near faults with recurrence intervals this long. There are no recommendations associated with this report. The information in the report will be reviewed as required, after the remaining district reports are completed in the region. See Object Overview for background and usage information.
This study updated the 1999 Earthquake hazard and risk assessment study Stage 1 Part B: Probabilistic seismic hazard assessment and Earthquake scenarios for the Canterbury region, and historic earthquakes in Christchurch report. It incorporated new fault data, a new distributed seismicity model and new methods for estimating Modified Mercalli intensities. See Object Overview for background and usage information.
This report provided information on the location and character of the Ostler Fault Zone near Twizel. The fault traces, and associated recommended fault avoidance zones, were mapped in detail for inclusion in a District Plan Change for the Twizel area. The Ostler Fault Zone was mapped in detail because of the higher likelihood of movement on that fault than others in the district, and the potential for future development across the fault zone because of its proximity to Twizel. See Object Overview for background and usage information. The report recommended that the information be incorporated into the District Plan Change and that site-specific investigations be undertaken before development is allowed within the fault avoidance zones. These recommendations were taken up by Mackenzie District Council.
Photograph captioned by Fairfax, "Clock tower at the old railway station, now Science Alive, stopped at time of the earthquake and won't be fixed until after the shocks stop".
Photograph captioned by Fairfax, "Clock tower at the old railway station, now Science Alive, stopped at time of the earthquake and won't be fixed until after the shocks stop".
A dissertation by Lev Zhuravsky submitted as partial fulfillment of the requirements for the degree of Master of Health Sciences Endorsed in Health Management, University of Otago, Dunedin, New Zealand.
Photograph captioned by Fairfax, "Clock tower at the old railway station, now Science Alive, stopped at time of the earthquake and won't be fixed until after the shocks stop".