Search

found 1866 results

Images, Canterbury Museum

Multicolour softcover book titled "The Big Quake, Canterbury September 4, 2010" by The Press; colour illustrations and maps; accompanying DVD. The extent of the damage caused by the 4 September 2010 earthquake is recorded in this book by Christchurch’s daily newspaper The Press. The overall message portrayed is one of community spirit and a com...

Images, eqnz.chch.2010

Band Together - Concert for Canterbury www.bandtogetherforcanterbury.co.nz 23rd October 2010 Free concrete in Hagley Park following the 4th September 2010 earthquake

Images, Canterbury Museum

One landscape colour digital photograph taken on 6 September 2010 showing earthquake damage to buildings on Victoria Street near Bealey Avenue. The red brick building is the Knox Church; it still stands on the corner of Bealey Avenue and Victoria Street following the earthquake, though some extreme measures were taken to make it safe. The red b...

Images, eqnz.chch.2010

Christchurch city experienced a magnitude 7.1 earthquake on September 4 at 4:35 am. The epicentre was 40 km west of the city. It was the most damaging earthquake in New Zealand since the Hawke's Bay earthquake in 1931, but there was no loss of life. It was fortunate the earthquake occurred when the central city streets were deserted, as there w...

Research papers, University of Canterbury Library

On 4 September 2010, a magnitude Mw 7.1 earthquake struck the Canterbury region on the South Island of New Zealand. The epicentre of the earthquake was located in the Darfield area about 40 km west of the city of Christchurch. Extensive damage was inflicted to lifelines and residential houses due to widespread liquefaction and lateral spreading in areas close to major streams, rivers and wetlands throughout Christchurch and Kaiapoi. Unreinforced masonry buildings also suffered extensive damage throughout the region. Despite the severe damage to infrastructure and residential houses, fortunately, no deaths occurred and only two injuries were reported in this earthquake. From an engineering viewpoint, one may argue that the most significant aspects of the 2010 Darfield Earthquake were geotechnical in nature, with liquefaction and lateral spreading being the principal culprits for the inflicted damage. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. This paper summarizes the observations and preliminary findings from this early reconnaissance work.