Search

found 3102 results

Research papers, The University of Auckland Library

A non-destructive hardness testing method has been developed to investigate the amount of plastic strain demand in steel elements subjected to cyclic loading. The focus of this research is on application to the active links of eccentrically braced frames (EBFs), which are a commonly used seismic-resisting system in modern steel framed buildings. The 2010/2011 Christchurch earthquake series, especially the very intense February 22 shaking, which was the first earthquake worldwide to push complete EBF systems fully into their inelastic state, generating a moderate to high level of plastic strain in EBF active links, for a range of buildings from 3 to 23 storeys in height. This raised two important questions: 1) what was the extent of plastic deformation in active links; and 2) what effect does that have to post-earthquake steel properties? This project comprised determining a robust relationship between hardness and plastic strain in order to be able to answer the first question and provide the necessary input into answering the second question. A non-destructive Leeb (portable) hardness tester (model TH170) has been used to measure the hardness, in order to determine the plastic strain, in hot rolled steel universal sections and steel plates. A bench top Rockwell B was used to compare and validated the hardness measured by the portable hardness tester. Hardness was measured from monotonically strained tensile test specimens to identify the relationship between hardness and plastic strain demand. Test results confirmed a good relationship between hardness and the amount of monotonically induced plastic strain. Surface roughness was identified as an important parameter in obtaining reliable hardness readings from a portable hardness reader. A proper surface preparation method was established by using three different cleaning methods, finished with hand sanding to achieve surface roughness coefficients sufficiently low not to distort the results. This work showed that a test surface roughness (Ra) is not more than 1.6 micron meter (μm) is required for accurate readings from the TH170 tester. A case study on an earthquake affected building was carried out to identify the relationship between hardness and amount of plastic strain demand in cyclically deformed active links. Hardness was carried out from active links shown visually to have been the most affected during one of the major earthquake events. Onsite hardness test results were then compared with laboratory hardness test results. A good relationship between hardness from onsite and laboratory was observed between the test methods; Rockwell B bench top and portable Leeb tester TH170. Manufacturing induced plastic strain in the top and bottom of the webs of hot rolled sections were discovered from this research, an important result which explains why visual effects of earthquake induced active link yielding (eg cracked or flaking paint) was typically more prevalent over the middle half depth of the active link. The extent of this was quantified. It was also evident that the hardness readings from the portable hardness tester are influenced by geometry, mass effects and rigidity of the links. The final experimental stage was application of the method to full scale cyclic inelastic tested nominally identical active links subjected to loading regimes comprising constant and variable plastic strain demands. The links were cyclically loaded to achieve different plastic strain level. A novel Digital Image Correlation (DIC) technique was incorporated during the tests of this scale, to confirm the level of plastic strain achieved. Tensile test specimens were water jet cut from cyclically deformed webs to analyse the level of plastic strain. Test results show clear evidence that cyclically deformed structural steel elements show good correlation between hardness and the amount of plastic strain demand. DIC method was found to be reliable and accurate to check the level of plastic strain within cyclically deformed structural steel elements.

Research papers, Victoria University of Wellington

On the 22nd of February, 2011 the city of Christchurch, New Zealand was crippled by a colossal earthquake. 185 people were killed, thousands injured and what remained was a city left in destruction and ruin. Thousands of Christchurch properties and buildings were left damaged beyond repair and the rich historical architecture of the Canterbury region had suffered irreparably.  This research will conduct an investigation into whether the use of mixed reality can aid in liberating Christchurch’s rich architectural heritage when applied to the context of destructed buildings within Christchurch.  The aim of this thesis is to formulate a narrative around the embodiment of mixed reality when subjected to the fragmentary historical architecture of Christchurch. Mixed reality will aspire to act as the defining ligature that holds the past, present and future of Christchurch’s architectural heritage intact as if it is all part of the same continuum.  This thesis will focus on the design of a memorial museum within a heavily damaged historical trust registered building due to the Christchurch earthquake. It is important and relevant to conceive the idea of such a design as history is what makes everything we know. The memories of the past, the being of the now and the projection of the future is the basis and fundamental imperative in honouring the city and people of Christchurch. Using the technologies of Mixed Reality and the realm of its counter parts the memorial museum will be a definitive proposition of desire in providing a psychological and physical understanding towards a better Christchurch, for the people of Christchurch.  This thesis serves to explore the renovation possibilities of the Canterbury provincial council building in its destructed state to produce a memorial museum for the Christchurch earthquake. The design seeks to mummify the building in its raw state that sets and develops the narrative through the spaces. The design intervention is kept at a required minimum and in doing so manifests a concentrated eloquence to the derelict space. The interior architecture unlocks the expression of history and time encompassed within a destructive and industrialised architectural dialogue. History is the inhabitant of the building, and using the physical and virtual worlds it can be set free.  This thesis informs a design for a museum in central Christchurch that celebrates and informs the public on past, present and future heritage aspects of Christchurch city. Using mixed reality technologies the spatial layout inside will be a direct effect of the mixed reality used and the exploration of the physical and digital heritage aspects of Christchurch. The use of technology in today’s world is so prevalent that incorporating it into a memorial museum for Christchurch would not only be interesting and exploratory but also offer a sense of pushing forward and striving beyond for a newer, fresher Christchurch. The memorial museum will showcase a range of different exhibitions that formulate around the devastating Christchurch earthquake. Using mixed reality technologies these exhibitions will dictate the spaces inside dependant on their various applications of mixed reality as a technology for architecture. Research will include; what the people of Canterbury are most dear to in regards to Christchurch’s historical environment; the use of mixed reality to visualise digital heritage, and the combination of the physical and digital to serve as an architectural mediation between what was, what is and what there could be.

Research papers, The University of Auckland Library

A review of the literature showed the lack of a truly effective damage avoidance solution for timber or hybrid timber moment resisting frames (MRFs). Full system damage avoidance selfcentring behaviour is difficult to achieve with existing systems due to damage to the floor slab caused by beam-elongation. A novel gravity rocking, self-centring beam-column joint with inherent and supplemental friction energy dissipation is proposed for low-medium rise buildings in all seismic zones where earthquake actions are greater than wind. Steel columns and timber beams are used in the hybrid MRF such that both the beam and column are continuous thus avoiding beam-elongation altogether. Corbels on the columns support the beams and generate resistance and self-centring through rocking under the influence of gravity. Supplemental friction sliders at the top of the beams resist sliding of the floor whilst dissipating energy as the floor lifts on the corbels and returns. 1:20 scale tests of 3-storey one-by-two bay building based on an earlier iteration of the proposed concept served as proof-of-concept and highlighted areas for improvement. A 1:5 scale 3-storey one-by-one bay building was subsequently designed. Sub-assembly tests of the beam-top asymmetric friction sliders demonstrated repeatable hysteresis. Quasi-static tests of the full building demonstrated a ‘flat bottomed’ flag-shaped hysteresis. Shake table tests to a suite of seven earthquakes scaled for Wellington with site soil type D to the serviceability limit state (SLS), ultimate limit state (ULS) and maximum credible event (MCE) intensity corresponding to an average return period of 25, 500 and 2500 years respectively were conducted. Additional earthquake records from the 22 February 2011 Christchurch earthquakes we included. A peak drift of 0.6%, 2.5% and 3.8% was reached for the worst SLS, ULS and MCE earthquake respectively whereas a peak drift of 4.5% was reached for the worst Christchurch record for tests in the plane of the MRF. Bi-directional tests were also conducted with the building oriented at 45 degrees on the shake table and the excitation factored by 1.41 to maintain the component in the direction of the MRF. Shear walls with friction slider hold-downs which reached similar drifts to the MRF were provided in the orthogonal direction. Similar peak drifts were reached by the MRF in the bi-directional tests, when the excitation was amplified as intended. The building self-centred with a maximum residual drift of 0.06% in the dynamic tests and demonstrated no significant damage. The member actions were magnified by up to 100% due to impact upon return of the floor after uplift when the peak drift reached 4.5%. Nonetheless, all of the members and connections remained essentially linearelastic. The shake table was able to produce a limited peak velocity of 0.275 m/s and this limited the severity of several of the ULS, MCE and Christchurch earthquakes, especially the near-field records with a large velocity pulse. The full earthquakes with uncapped velocity were simulated in a numerical model developed in SAP2000. The corbel supports were modelled with the friction isolator link element and the top sliders were modelled with a multi-linear plastic link element in parallel with a friction spring damper. The friction spring damper simulated the increase in resistance with increasing joint rotation and a near zero return stiffness, as exhibited by the 1:5 scale test building. A good match was achieved between the test quasi-static global force-displacement response and the numerical model, except a less flat unloading curve in the numerical model. The peak drift from the shake table tests also matched well. Simulations were also run for the full velocity earthquakes, including vertical ground acceleration and different floor imposed load scenarios. Excessive drift was predicted by the numerical model for the full velocity near-field earthquakes at the MCE intensity and a rubber stiffener for increasing the post joint-opening stiffness was found to limit the drift to 4.8%. Vertical ground acceleration had little effect on the global response. The system generates most of its lateral resistance from the floor weight, therefore increasing the floor imposed load increased the peak drift, but less than it would if the resistance of the system did not increase due to the additional floor load. A seismic design procedure was discussed under the framework of the existing direct displacement-based design method. An expression for calculating the area-based equivalent viscous damping (EVD) was derived and a conservative correction factor of 0.8 was suggested. A high EVD of up to about 15% can be achieved with the proposed system at high displacement ductility levels if the resistance of the top friction sliders is maximised without compromising reliable return of the floor after uplift. Uniform strength joints with an equal corbel length up the height of the building and similar inter-storey drifts result in minimal relative inter-floor uplift, except between the first floor and ground. Guidelines for detailing the joint for damage avoidance including bi-directional movement were also developed.

Research papers, The University of Auckland Library

Critical infrastructure networks are highly relied on by society such that any disruption to service can have major social and economic implications. Furthermore, these networks are becoming increasingly dependent on each other for normal operation such that an outage or asset failure in one system can easily propagate and cascade across others resulting in widespread disruptions in terms of both magnitude and spatial reach. It is the vulnerability of these networks to disruptions and the corresponding complexities in recovery processes which provide direction to this research. This thesis comprises studies contributing to two areas (i) the modelling of national scale in-terdependent infrastructure systems undergoing major disruptions, and (ii) the tracking and quantification of infrastructure network recovery trajectories following major disruptions. Firstly, methods are presented for identifying nationally significant systemic vulnerabilities and incorporating expert knowledge into the quantification of infrastructure interdependency mod-elling and simulation. With application to the interdependent infrastructures networks across New Zealand, the magnitudes and spatial extents of disruption are investigated. Results high-light the importance in considering interdependencies when assessing disruptive risks and vul-nerabilities in disaster planning applications and prioritising investment decisions for enhancing resilience of national networks. Infrastructure dependencies are further studied in the context of recovery from major disruptions through the analysis of curves measuring network functionality over time. Continued studies into the properties of recovery curves across a database of global natural disasters produce statistical models for predicting the trajectory and expected recovery times. Finally, the use of connectivity based metrics for quantifying infrastructure system functionality during recovery are considered with a case study application to the Christchurch Earthquake (February 22, 2011) wastewater network response.

Research papers, The University of Auckland Library

The seismic tremor that shook Christchurch on February 22, 2011, not only shattered buildings but also the spirit of the city’s residents. Amidst the ruins, this design-focused thesis unravels two intertwining narratives, each essential to the city’s resurrection. At its core, this thesis probes the preservation of Christchurch’s memory and character, meticulously chronicling the lost heritage architecture and the subsequent urban metamorphosis. Beyond bricks and mortar, it also confronts the silent aftershocks - the pervasive mental health challenges stemming from personal losses and the disfigured cityscape. As a native of Christchurch, intimately connected to its fabric, my lens reflects not just on the architectural reconstruction but also on the emotional reconstruction. My experience as an autistic individual, a recently discovered facet of my identity, infuses this design journey with a distinct prism through which I perceive and interact with the world. The colourful sketches that drive the design process aren’t mere illustrations but manifestations of my interpretation of spaces and concepts, evoking joy and vitality—a testament to embracing diversity in design. Drawing parallels between healing my own traumas with my colourful and joyful neurodivergent worldview, I’ve woven this concept into proposals aimed at healing the city through whimsy, joy, and vibrant colours. Personal experiences during and post-earthquakes profoundly shape my design proposals. Having navigated the labyrinth of my own mental health amid the altered cityscape, I seek avenues for reconciliation, both personal and communal. The vibrant sketches and designs presented in this thesis encapsulate this vision—a fusion of vivid, unconventional interpretations and a dedication to preserving the essence of the original cityscape while still encouraging movement into the future.

Research Papers, Lincoln University

The city of Christchurch, New Zealand, was until very recently a “Junior England”—a small city that still bore the strong imprint of nineteenth-century British colonization, alongside a growing interest in the underlying biophysical setting and the indigenous pre-European landscape. All of this has changed as the city has been subjected to a devastating series of earthquakes, beginning in September 2010, and still continuing, with over 12,000 aftershocks recorded. One of these aftershocks, on February 22, 2011, was very close to the city center and very shallow with disastrous consequences, including a death toll of 185. Many buildings collapsed, and many more need to be demolished for safety purposes, meaning that over 80 percent of the central city will have gone. Tied up with this is the city’s precious heritage—its buildings and parks, rivers, and trees. The threats to heritage throw debates over economics and emotion into sharp relief. A number of nostalgic positions emerge from the dust and rubble, and in one form is a reverse-amnesia—an insistence of the past in the present. Individuals can respond to nostalgia in very different ways, at one extreme become mired in it and unable to move on, and at the other, dismissive of nostalgia as a luxury in the face of more pressing crises. The range of positions on nostalgia represent the complexity of heritage debates, attachment, and identity—and the ways in which disasters amplify the ongoing discourse on approaches to conservation and the value of historic landscapes.

Research papers, Victoria University of Wellington

This project looks at how destroyed architecture, although physically lost, fundamentally continues to exist within human memories as a non-physical entity. The site chosen is Avonside Girls’ High School in Christchurch, New Zealand, a school heavily damaged during the February 22nd earthquake in 2011. The project focuses on the Main Block, a 1930s masonry building which had always been a symbol for the school and its alumni.  The key theories relevant to this are studies on non-material architecture and memory as these subjects investigate the relationship between conceptual idea and the triggering of it. This research aims to study how to fortify a thought-based architecture against neglect, similar to the retrofitting of physical structures.  In doing so, the importance of the emotive realm of architecture and the idea behind a building (as opposed to the built component itself) is further validated, promoting more broadminded stances regarding the significance of the idea over the object. A new method for disaster recovery and addressing trauma from lost architecture is also acquired. Factors regarding advanced structural systems and programmes are not covered within the scope of this research because the project instead explores issues regarding the boundaries between the immaterial and material.  The project methodology involves communicating a narrative derived from the memories alumni and staff members have of the old school block. The approach for portraying the narrative is based on a list of strategies obtained from case studies.  The final product of the research is a new design for the high school, conveyed through a set of atmospheric drawings that cross-examines the boundaries between the physical and non-physical realms by representing the version of the school that exists solely within memories.

Research papers, University of Canterbury Library

In 2010 and 2011 Christchurch, New Zealand experienced a series of earthquakes that caused extensive damage across the city, but primarily to the Central Business District (CBD) and eastern suburbs. A major feature of the observed damage was extensive and severe soil liquefaction and associated ground damage, affecting buildings and infrastructure. The behaviour of soil during earthquake loading is a complex phenomena that can be most comprehensively analysed through advanced numerical simulations to aid engineers in the design of important buildings and critical facilities. These numerical simulations are highly dependent on the capabilities of the constitutive soil model to replicate the salient features of sand behaviour during cyclic loading, including liquefaction and cyclic mobility, such as the Stress-Density model. For robust analyses advanced soil models require extensive testing to derive engineering parameters under varying loading conditions for calibration. Prior to this research project little testing on Christchurch sands had been completed, and none from natural samples containing important features such as fabric and structure of the sand that may be influenced by the unique stress-history of the deposit. This research programme is focussed on the characterisation of Christchurch sands, as typically found in the CBD, to facilitate advanced soil modelling in both res earch and engineering practice - to simulate earthquake loading on proposed foundation design solutions including expensive ground improvement treatments. This has involved the use of a new Gel Push (GP) sampler to obtain undisturbed samples from below the ground-water table. Due to the variable nature of fluvial deposition, samples with a wide range of soil gradations, and accordingly soil index properties, were obtained from the sampling sites. The quality of the samples is comprehensively examined using available data from the ground investigation and laboratory testing. A meta-quality assessment was considered whereby a each method of evaluation contributed to the final quality index assigned to the specimen. The sampling sites were characterised with available geotechnical field-based test data, primarily the Cone Penetrometer Test (CPT), supported by borehole sampling and shear-wave velocity testing. This characterisation provides a geo- logical context to the sampling sites and samples obtained for element testing. It also facilitated the evaluation of sample quality. The sampling sites were evaluated for liquefaction hazard using the industry standard empirical procedures, and showed good correlation to observations made following the 22 February 2011 earthquake. However, the empirical method over-predicted liquefaction occurrence during the preceding 4 September 2010 event, and under-predicted for the subsequent 13 June 2011 event. The reasons for these discrepancies are discussed. The response of the GP samples to monotonic and cyclic loading was measured in the laboratory through triaxial testing at the University of Canterbury geomechanics laboratory. The undisturbed samples were compared to reconstituted specimens formed in the lab in an attempt to quantify the effect of fabric and structure in the Christchurch sands. Further testing of moist tamped re- constituted specimens (MT) was conducted to define important state parameters and state-dependent properties including the Critical State Line (CSL), and the stress-strain curve for varying state index. To account for the wide-ranging soil gradations, selected representative specimens were used to define four distinct CSL. The input parameters for the Stress-Density Model (S-D) were derived from a suite of tests performed on each representative soil, and with reference to available GP sample data. The results of testing were scrutinised by comparing the data against expected trends. The influence of fabric and structure of the GP samples was observed to result in similar cyclic strength curves at 5 % Double Amplitude (DA) strain criteria, however on close inspection of the test data, clear differences emerged. The natural samples exhibited higher compressibility during initial loading cycles, but thereafter typically exhibited steady growth of plastic strain and excess pore water pressure towards and beyond the strain criteria and initial liquefaction, and no flow was observed. By contrast the reconstituted specimens exhibited a stiffer response during initial loading cycles, but exponential growth in strains and associated excess pore water pressure beyond phase-transformation, and particularly after initial liquefaction where large strains were mobilised in subsequent cycles. These behavioural differences were not well characterised by the cyclic strength curve at 5 % DA strain level, which showed a similar strength for both GP samples and MT specimens. A preliminary calibration of the S-D model for a range of soil gradations is derived from the suite of laboratory test data. Issues encountered include the influence of natural structure on the peak-strength–state index relationship, resulting in much higher peak strengths than typically observed for sands in the literature. For the S-D model this resulted in excessive stiffness to be modelled during cyclic mobility, when the state index becomes large momentarily, causing strain development to halt. This behaviour prevented modelling the observed re- sponse of silty sands to large strains, synonymous with “liquefaction”. Efforts to reduce this effect within the current formulation are proposed as well as future research to address this issue.

Research papers, Victoria University of Wellington

Christchurch was struck by a 6.3 magnitude earthquake on the 22 February 2011. The quake devastated the city, taking lives and causing widespread damage to the inner city and suburban homes. The central city lost over half its buildings and over 7000 homes were condemned throughout Christchurch. The loss of such a great number of homes has created the requirement for new housing to replace those that were lost. Many of which were located in the eastern, less affluent, suburbs.  The response to the housing shortage is the planned creation of large scale subdivisions on the outskirts of the city. Whilst this provides the required housing it creates additional sprawl to a city that does not need it. The extension of Christchurch’s existing suburban sprawl puts pressure on roading and pushes residents further out of the city, creating a disconnection between them.  Christchurch’s central city had a very small residential population prior to the earthquakes with very few options for dense inner city living. The proposed rebuild of the inner city calls for a new ‘dense, vibrant and diverse central hub’. Proposing the introduction of new residential units within the central city. However the placement of the low-rise housing in a key attribute of the rebuild, the eastern green ‘Frame’, diminishes its value as open green space. The proposed housing will also be restrictive in its target market and therefore the idea of a ‘vibrant’ inner city is difficult to achieve.  This thesis acts as response to the planned rebuild of inner Christchurch. Proposing the creation of a model for inner city housing which provides an alternative option to the proposed housing and existing and ongoing suburban sprawl. The design options were explored through a design-led process were the options were critiqued and developed.  The ‘final’ proposal is comprises of three tall towers, aptly named the Triple Towers, which condense the proposed low-rise housing from an 11000 square metre footprint to combined footprint of 1500 square metres. The result is an expansion of the publicly available green space along the proposed eastern frame of the city. The height of the project challenges the height restrictions and is provocative in its proposal and placement. The design explores the relationships between the occupants, the building, the ‘Frame’ and the central city.  The project is discussed through an exploration of the architecture of Rem Koolhaas, Renzo Piano and Oscar Niemeyer. Rather than their architecture being taken as a direct influence on which the design is based the discussion revolves around how and why each piece of comparative architecture is relevant to the designs desired outcome.

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence (CES) of 2010-2011 produced large seismic moments up to Mw 7.1. These large, near-to-surface (<15 km) ruptures triggered >6,000 rockfall boulders on the Port Hills of Christchurch, many of which impacted houses and affected the livelihoods of people within the impacted area. From these disastrous and unpredicted natural events a need arose to be able to assess the areas affected by rockfall events in the future, where it is known that a rockfall is possible from a specific source outcrop but the potential boulder runout and dynamics are not understood. The distribution of rockfall deposits is largely constrained by the physical properties and processes of the boulder and its motion such as block density, shape and size, block velocity, bounce height, impact and rebound angle, as well as the properties of the substrate. Numerical rockfall models go some way to accounting for all the complex factors in an algorithm, commonly parameterised in a user interface where site-specific effects can be calibrated. Calibration of these algorithms requires thorough field checks and often experimental practises. The purpose of this project, which began immediately following the most destructive rupture of the CES (February 22, 2011), is to collate data to characterise boulder falls, and to use this information, supplemented by a set of anthropogenic boulder fall data, to perform an in-depth calibration of the three-dimensional numerical rockfall model RAMMS::Rockfall. The thesis covers the following topics: • Use of field data to calibrate RAMMS. Boulder impact trails in the loess-colluvium soils at Rapaki Bay have been used to estimate ranges of boulder velocities and bounce heights. RAMMS results replicate field data closely; it is concluded that the model is appropriate for analysing the earthquake-triggered boulder trails at Rapaki Bay, and that it can be usefully applied to rockfall trajectory and hazard assessment at this and similar sites elsewhere. • Detailed analysis of dynamic rockfall processes, interpreted from recorded boulder rolling experiments, and compared to RAMMS simulated results at the same site. Recorded rotational and translational velocities of a particular boulder show that the boulder behaves logically and dynamically on impact with different substrate types. Simulations show that seasonal changes in soil moisture alter rockfall dynamics and runout predictions within RAMMS, and adjustments are made to the calibration to reflect this; suggesting that in hazard analysis a rockfall model should be calibrated to dry rather than wet soil conditions to anticipate the most serious outcome. • Verifying the model calibration for a separate site on the Port Hills. The results of the RAMMS simulations show the effectiveness of calibration against a real data set, as well as the effectiveness of vegetation as a rockfall barrier/retardant. The results of simulations are compared using hazard maps, where the maximum runouts match well the mapped CES fallen boulder maximum runouts. The results of the simulations in terms of frequency distribution of deposit locations on the slope are also compared with those of the CES data, using the shadow angle tool to apportion slope zones. These results also replicate real field data well. Results show that a maximum runout envelope can be mapped, as well as frequency distribution of deposited boulders for hazard (and thus risk) analysis purposes. The accuracy of the rockfall runout envelope and frequency distribution can be improved by comprehensive vegetation and substrate mapping. The topics above define the scope of the project, limiting the focus to rockfall processes on the Port Hills, and implications for model calibration for the wider scientific community. The results provide a useful rockfall analysis methodology with a defensible and replicable calibration process, that has the potential to be applied to other lithologies and substrates. Its applications include a method of analysis for the selection and positioning of rockfall countermeasure design; site safety assessment for scaling and demolition works; and risk analysis and land planning for future construction in Christchurch.

Research papers, University of Canterbury Library

Following the 22nd February 2011, Mw 6.2 earthquake located along a previously unknown fault beneath the Port Hills of Christchurch, surface cracking was identified in contour parallel locations within fill material at Quarry Road on the lower slopes of Mount Pleasant. GNS Science, in the role of advisor to the Christchurch City Council, concluded that these cracks were a part of a potential rotational mass movement (named zone 11A) within the fill and airfall loess material present. However, a lack of field evidence for slope instability and an absence of laboratory geotechnical data on which slope stability analysis was based, suggested this conclusion is potentially incorrect. It was hypothesised that ground cracking was in fact due to earthquake shaking, and not mass movement within the slope, thus forming the basis of this study. Three soil units were identified during surface and subsurface investigations at Quarry Road: fill derived from quarry operations in the adjacent St. Andrews Quarry (between 1893 and 1913), a buried topsoil, and underlying in-situ airfall loess. The fill material was identified by the presence of organic-rich topsoil “clods” that were irregular in both size (∼10 – 200 mm) and shape, with variable thicknesses of 1 – 10 m. Maximum thickness, as indicated by drill holes and geophysical survey lines, was identified below 6 Quarry Road and 7 The Brae where it is thought to infill a pre-existing gully formed in the underlying airfall loess. Bearing strength of the fill consistently exceeded 300 kPa ultimate below ∼500 mm depth. The buried topsoil was 200 – 300 mm thick, and normally displayed a lower bearing strength when encountered, but not below 300 kPa ultimate (3 – 11 blows per 100mm or ≥100 kPa allowable). In-situ airfall loess stood vertically in outcrop due to its characteristic high dry strength and also showed Scala penetrometer values of 6 – 20+ blows per 100 mm (450 – ≥1000 kPa ultimate). All soils were described as being moist to dry during subsurface investigations, with no groundwater table identified during any investigation into volcanic bedrock. In-situ moisture contents were established using bulk disturbed samples from hand augers and test pitting. Average moisture contents were low at 9% within the fill, 11 % within the buried topsoil, and 8% within the airfall loess: all were below the associated average plastic limit of 17, 15, and 16, respectively, determined during Atterberg limit analysis. Particle size distributions, identified using the sieve and pipette method, were similar between the three soil units with 11 – 20 % clay, 62 – 78 % silt, and 11 – 20 % fine sand. Using these results and the NZGS soil classification, the loess derived fill and in-situ airfall loess are termed SILT with some clay and sand, and the buried topsoil is SILT with minor clay and sand. Dispersivity of the units was found using the Emerson crumb test, which established that the fill can be non- to completely dispersive (score 0 – 4). The buried topsoil was always non-dispersive (score 0), and airfall loess completely dispersive (score 4). Values for cohesion (c) and internal friction angle (φ) of the three soil units were established using the direct shear box at field moisture contents. Results showed all soil units had high shear strengths at the moisture contents tested (c = 18 – 24 kPa and φ = 42 – 50°), with samples behaving in a brittle fashion. Moisture content was artificially increased to 16% within the buried topsoil, which reduced the shear strength (c = 10 kPa, φ = 18°) and allowed it to behave plastically. Observational information indicating stability at Quarry Road included: shallow, discontinuous, cracks that do not display vertical offset; no scarp features or compressional zones typical of landsliding; no tilted or deformed structures; no movement in inclinometers; no basal shear zone identified in logged core to 20 m depth; low field moisture contents; no groundwater table; and high soil strength using Scala penetrometers. Limit equilibrium analysis of the slope was conducted using Rocscience software Slide 5.0 to verify the slope stability identified by observational methods. Friction, cohesion, and density values determined during laboratory were input into the two slope models investigated. Results gave minimum static factor of safety values for translational (along buried topsoil) and rotational (in the fill) slides of 2.4 – 4.2. Sensitivity of the slope to reduced shear strength parameters was analysed using c = 10 kPa and φ = 18° for the translational buried topsoil plane, and a cohesion of 0 kPa within the fill for the rotational plane. The only situation that gave a factor of safety <1.0 was in nonengineered fill at 0.5 m depth. Pseudostatic analysis based on previous peak ground acceleration (PGA) values for the Canterbury Earthquake Sequence, and predicted PGAs for future Alpine Fault and Hope Fault earthquakes established minimum factor of safety values between 1.2 and 3.3. Yield acceleration PGAs were computed to be between 0.8g and 1.6g. Based on all information gathered, the cracking at Quarry Road is considered to be shallow deformation in response to earthquake shaking, and not due to deep-seated landsliding. It is recommended that the currently bare site be managed by smoothing the land, installing contour drainage, and bioremediation of the surface soils to reduce surface water infiltration and runoff. Extensive earthworks, including removal of the fill, are considered unnecessary. Any future replacement of housing would be subject to site-specific investigations, and careful foundation design based on those results.

Research papers, University of Canterbury Library

This dissertation addresses a diverse range of applied aspects in ground motion simulation validation via the response of complex structures. In particular, the following topics are addressed: (i) the investigation of similarity between recorded and simulated ground motions using code-based 3D irregular structural response analysis, (ii) the development of a framework for ground motion simulations validation to identify the cause of differences between paired observed and simulated dataset, and (iii) the illustration of the process of using simulations for seismic performance-based assessment. The application of simulated ground motions is evaluated for utilisation in engineering practice by considering responses of 3D irregular structures. Validation is performed in a code-based context when the NZS1170.5 (NZS1170.5:2004, 2004) provisions are followed for response history analysis. Two real buildings designed by engineers and physically constructed in Christchurch before the 2010-2011 Canterbury earthquake sequence are considered. The responses are compared when the buildings are subjected to 40 scaled recorded and their subsequent simulated ground motions selected from 22 February 2011 Christchurch. The similarity of recorded and simulated responses is examined using statistical methods such as bootstrapping and hypothesis testing to determine whether the differences are statistically significant. The findings demonstrate the applicability of simulated ground motion when the code-based approach is followed in response history analysis. A conceptual framework is developed to link the differences between the structural response subjected to simulated and recorded ground motions to the differences in their corresponding intensity measures. This framework allows the variability to be partitioned into the proportion that can be “explained” by the differences in ground motion intensity measures and the remaining “unexplained” variability that can be attributed to different complexities such as dynamic phasing of multi-mode response, nonlinearity, and torsion. The application of this framework is examined through a hierarchy of structures reflecting a range of complexity from single-degree-of-freedom to 3D multi-degree-of-freedom systems with different materials, dynamic properties, and structural systems. The study results suggest the areas that ground motion simulation should focus on to improve simulations by prioritising the ground motion intensity measures that most clearly account for the discrepancies in simple to complex structural responses. Three approaches are presented to consider recorded or simulated ground motions within the seismic performance-based assessment framework. Considering the applications of ground motions in hazard and response history analyses, different pathways in utilising ground motions in both areas are explored. Recorded ground motions are drawn from a global database (i.e., NGA-West2 Ancheta et al., 2014). The NZ CyberShake dataset is used to obtain simulations. Advanced ground motion selection techniques (i.e., generalized conditional intensity measure, GCIM) are used for ground motion selection at a few intensity levels. The comparison is performed by investigating the response of an example structure (i.e., 12-storey reinforced concrete special moment frame) located in South Island, NZ. Results are compared and contrasted in terms of hazard, groundmotion selection, structural responses, demand hazard, and collapse risk, then, the probable reasons for differences are discussed. The findings from this study highlight the present opportunities and shortcomings in using simulations in risk assessment. i