Liv Kivi and Geoff Clements in the UC QuakeBox container at the Canterbury A&P Show.
Liv Kivi sitting outside the UC QuakeBox container in New Brighton. The container was parked south of the New Brighton Library.
A sign in a shop on the corner of Anfield Street and Lower Styx Road in Brooklands. The sign reads, "Save Brooklands. We want to stay!".
Sally Roome talking to members of the Sumner community outside the UC QuakeBox container in Sumner. Above, the damaged cliffs can be seen with a house at the edge on a lean.
Sally Roome and Troy Gillan at the UC QuakeBox in the carpark of Westfield Riccarton.
Sally Roome talking to members of the Sumner community outside the UC QuakeBox container in Sumner. Above, the damaged cliffs can be seen with a house at the edge on a lean. To the left, shipping containers line the street. One has been placed on the footpath next to where the UC QuakeBox is sitting and covered with a patchwork quilt.
The winners parade at the Canterbury A&P Show.
Derek Bent and Geoff Clements standing outside the UC QuakeBox container in Brooklands. The container was parked in the car park of the Brooklands Community Centre on Anfield Street.
Liz Kivi standing outside the UC QuakeBox at the Canterbury A&P Show.
Chelsea Smith standing outside the UC QuakeBox container in the car park of Westfield Riccarton.
Derek Bent, Troy Gillan and Lucy-Jane Walsh outside the UC QuakeBox at the Canterbury A&P Show.
Chelsea Smith standing outside the UC QuakeBox container in the car park of Westfield Riccarton.
Sally Roome talking to members of the Sumner community outside the UC QuakeBox container in Sumner. Above, the damaged cliffs can be seen with a house at the edge on a lean.
Sally Roome and Troy Gillan at the UC QuakeBox in the carpark of Westfield Riccarton.
Video of Maryrose Ansell's earthquake story, captured by the UC QuakeBox project.
The standard way in which disaster damages are measured involves examining separately the number of fatalities, of injuries, of people otherwise affected, and the financial damage that natural disasters cause. Here, we implement a novel way to aggregate these separate measures of disaster impact and apply it to two catastrophic events from 2011: the Christchurch (New Zealand) earthquakes and the Greater Bangkok (Thailand) flood. This new measure, which is similar to the World Health Organization's calculation of Disability Adjusted Life Years (DALYs) lost due to the burden of diseases and injuries, is described in detail in Noy [7]. It allows us to conclude that New Zealand lost 180 thousand lifeyears as a result of the 2011 events, and Thailand lost 2644 thousand lifeyears. In per capita terms, the loss is similar, with both countries losing about 15 days per person due to the 2011 catastrophic events in these two countries. © This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Pws-2010-10-02-dsc03098
Pws-2010-10-02-dsc03097
Photograph captioned by BeckerFraserPhotos, "Lots of verticals from this viewpoint in Gasson Street".
Pws-2010-10-02-dsc03099
©2019. American Geophysical Union. All Rights Reserved. Earthquakes have been inferred to induce hydrological changes in aquifers on the basis of either changes to well water-levels or tidal behavior, but the relationship between these changes remains unclear. Here, changes in tidal behavior and water-levels are quantified using a hydrological network monitoring gravel aquifers in Canterbury, New Zealand, in response to nine earthquakes (of magnitudes M w 5.4 to 7.8) that occurred between 2008 and 2015. Of the 161 wells analyzed, only 35 contain water-level fluctuations associated with “Earth + Ocean” (7) or “Ocean” (28) tides. Permeability reduction manifest as changes in tidal behavior and increased water-levels in the near field of the Canterbury earthquake sequence of 2010–2011 support the hypothesis of shear-induced consolidation. However, tidal behavior and water-level changes rarely occurred simultaneously (~2%). Water-level changes that occurred with no change in tidal behavior reequilibrated at a new postseismic level more quickly (on timescales of ~50 min) than when a change in tidal behavior occurred (~240 min to 10 days). Water-level changes were more than likely to occur above a peak dynamic stress of ~50 kPa and were more than likely to not occur below ~10 kPa. The minimum peak dynamic stress required for a tidal behavior change to occur was ~0.2 to 100 kPa.
Pws-2010-10-02-dsc03100
Pws-2010-10-02-dsc03096
As part of a seismic retrofit scheme, surface bonded glass fiber-reinforced polymer (GFRP) fabric was applied to two unreinforced masonry (URM) buildings located in Christchurch, New Zealand. The unreinforced stone masonry of Christchurch Girls’ High School (GHS) and the unreinforced clay brick masonry Shirley Community Centre were retrofitted using surface bonded GFRP in 2007 and 2009, respectively. Much of the knowledge on the seismic performance of GFRP retrofitted URM was previously assimilated from laboratory-based experimental studies with controlled environments and loading schemes. The 2010/2011 Canterbury earthquake sequence provided a rare opportunity to evaluate the GFRP retrofit applied to two vintage URM buildings and to document its performance when subjected to actual design-level earthquake-induced shaking. Both GFRP retrofits were found to be successful in preserving architectural features within the buildings as well as maintaining the structural integrity of the URM walls. Successful seismic performance was based on comparisons made between the GFRP retrofitted GHS building and the adjacent nonretrofitted Boys’ High School building, as well as on a comparison between the GFRP retrofitted and nonretrofitted walls of the Shirley Community Centre building. Based on detailed postearthquake observations and investigations, the GFRP retrofitted URM walls in the subject buildings exhibited negligible to minor levels of damage without delamination, whereas significant damage was observed in comparable nonretrofitted URM walls. AM - Accepted Manuscript
Photograph captioned by BeckerFraserPhotos, "View from the roof of Alice in Videoland building".
Within four weeks of the September 4 2010 Canterbury Earthquake a new, loosely-knit community group appeared in Christchurch under the banner of “Greening the Rubble.” The general aim of those who attended the first few meetings was to do something to help plug the holes that had already appeared or were likely to appear over the coming weeks in the city fabric with some temporary landscaping and planting projects. This article charts the first eighteen months of Greening the Rubble and places the initiative in a broader context to argue that although seismic events in Christchurch acted as a “call to palms,” so to speak, the city was already in need of some remedial greening. It concludes with a reflection on lessons learned to date by GTR and commentary on the likely issues ahead for this new mini-social-environmental movement in the context of a quake-affected and still quake-prone major New Zealand city. One of the key lessons for GTR and all of those involved in Christchurch recovery activities to date is that the city is still very much in the middle of the event and is to some extent a laboratory for seismic and agency management studies alike.
The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand, earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e., anchorages having plates on the exterior facade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation, and the use of metal mesh sleeves. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5° to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a summary of the performed experimental program and test results, and a proposed pull-out capacity relationship for adhesive anchors installed into multi-leaf clay brick masonry are presented herein. AM - Accepted Manuscript
A blog post from US Ambassador to New Zealand and Samoa, David Huebner, titled, "Friends Helping Friends".
A blog post from US Ambassador to New Zealand and Samoa, David Huebner, titled, "Craig Weaver Remembers February 22nd".
Background: Up to 6 years after the 2011 Christchurch earthquakes, approximately one-third of parents in the Christchurch region reported difficulties managing the continuously high levels of distress their children were experiencing. In response, an app named Kākano was co-designed with parents to help them better support their children’s mental health. Objective: The objective of this study was to evaluate the acceptability, feasibility, and effectiveness of Kākano, a mobile parenting app to increase parental confidence in supporting children struggling with their mental health. Methods: A cluster-randomized delayed access controlled trial was carried out in the Christchurch region between July 2019 and January 2020. Parents were recruited through schools and block randomized to receive immediate or delayed access to Kākano. Participants were given access to the Kākano app for 4 weeks and encouraged to use it weekly. Web-based pre- and postintervention measurements were undertaken. Results: A total of 231 participants enrolled in the Kākano trial, with 205 (88.7%) participants completing baseline measures and being randomized (101 in the intervention group and 104 in the delayed access control group). Of these, 41 (20%) provided full outcome data, of which 19 (18.2%) were for delayed access and 21 (20.8%) were for the immediate Kākano intervention. Among those retained in the trial, there was a significant difference in the mean change between groups favoring Kākano in the brief parenting assessment (F1,39=7, P=.012) but not in the Short Warwick-Edinburgh Mental Well-being Scale (F1,39=2.9, P=.099), parenting self-efficacy (F1,39=0.1, P=.805), family cohesion (F1,39=0.4, P=.538), or parenting sense of confidence (F1,40=0.6, P=.457). Waitlisted participants who completed the app after the waitlist period showed similar trends for the outcome measures with significant changes in the brief assessment of parenting and the Short Warwick-Edinburgh Mental Well-being Scale. No relationship between the level of app usage and outcome was found. Although the app was designed with parents, the low rate of completion of the trial was disappointing. Conclusions: Kākano is an app co-designed with parents to help manage their children’s mental health. There was a high rate of attrition, as is often seen in digital health interventions. However, for those who did complete the intervention, there was some indication of improved parental well-being and self-assessed parenting. Preliminary indications from this trial show that Kākano has promising acceptability, feasibility, and effectiveness, but further investigation is warranted. Trial Registration: Australia New Zealand Clinical Trials Registry ACTRN12619001040156; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=377824&isReview=true