A photograph contributed by Jennifer, a participant in the Understanding Place research project. The photograph has the description "Not edible!" Please note that Jennifer's Red Zone Story was a test-pilot for the Understanding Place project.
A photograph contributed by Jennifer, a participant in the Understanding Place research project. The photograph has the description "More mysterious mushrooms". Please note that Jennifer's Red Zone Story was a test-pilot for the Understanding Place project.
A photograph contributed by Jennifer, a participant in the Understanding Place research project. The photograph has the description "An edible mushroom!" Please note that Jennifer's Red Zone Story was a test-pilot for the Understanding Place project.
Part 1 of a video contributed by Henry Allison, a participant in the Understanding Place research project. The video has the description "Henry Allison talks about his experiences at the brewery on St Asaph Street during the earthquakes, and about the architecture that was lost in the central city".
A photograph contributed by Jennifer, a participant in the Understanding Place research project. The photograph has the description "The ground is covered in little mushrooms when you start looking, but it's hard to tell which are edible". Please note that Jennifer's Red Zone Story was a test-pilot for the Understanding Place project.
When the 2010 and 2011 earthquakes created a city-wide outdoor research laboratory, UC Civil Engineering Professor Misko Cubrinovski gathered as much information as possible. This work has been recognised by the American Society of Civil Engineers (ASCE), which is presenting him with the 2019 Ralph B. Peck Award for "outstanding contributions to the geotechnical engineering profession through the publication of several insightful field case histories"
©2019. American Geophysical Union. All Rights Reserved. Earthquakes have been inferred to induce hydrological changes in aquifers on the basis of either changes to well water-levels or tidal behavior, but the relationship between these changes remains unclear. Here, changes in tidal behavior and water-levels are quantified using a hydrological network monitoring gravel aquifers in Canterbury, New Zealand, in response to nine earthquakes (of magnitudes M w 5.4 to 7.8) that occurred between 2008 and 2015. Of the 161 wells analyzed, only 35 contain water-level fluctuations associated with “Earth + Ocean” (7) or “Ocean” (28) tides. Permeability reduction manifest as changes in tidal behavior and increased water-levels in the near field of the Canterbury earthquake sequence of 2010–2011 support the hypothesis of shear-induced consolidation. However, tidal behavior and water-level changes rarely occurred simultaneously (~2%). Water-level changes that occurred with no change in tidal behavior reequilibrated at a new postseismic level more quickly (on timescales of ~50 min) than when a change in tidal behavior occurred (~240 min to 10 days). Water-level changes were more than likely to occur above a peak dynamic stress of ~50 kPa and were more than likely to not occur below ~10 kPa. The minimum peak dynamic stress required for a tidal behavior change to occur was ~0.2 to 100 kPa.
Tests have revealed that New Zealand's latest building designs will stand up to earthquakes of a greater intensity than the ones that occurred in Christchurch and Kaikōura. Researchers from the University of Auckland and Canterbury, in collaboration with QuakeCoRE and Tongji University in China, built a two-storey concrete building and put it on one of the largest shake tables in the world. All of the building's details were based on existing buildings in Wellington and Christchurch. The project leader is the University of Auckland's Dr Rick Henry. He talks to Guyon Espiner.