Search

found 523 results

Images, eqnz.chch.2010

Band Together - Concert for Canterbury www.bandtogetherforcanterbury.co.nz 23rd October 2010 Free concrete in Hagley Park following the 4th September 2010 earthquake

Images, eqnz.chch.2010

Band Together - Concert for Canterbury www.bandtogetherforcanterbury.co.nz 23rd October 2010 Free concrete in Hagley Park following the 4th September 2010 earthquake

Images, eqnz.chch.2010

Band Together - Concert for Canterbury www.bandtogetherforcanterbury.co.nz 23rd October 2010 Free concrete in Hagley Park following the 4th September 2010 earthquake

Images, eqnz.chch.2010

Band Together - Concert for Canterbury www.bandtogetherforcanterbury.co.nz 23rd October 2010 Free concrete in Hagley Park following the 4th September 2010 earthquake

Images, eqnz.chch.2010

Band Together - Concert for Canterbury www.bandtogetherforcanterbury.co.nz 23rd October 2010 Free concrete in Hagley Park following the 4th September 2010 earthquake

Images, eqnz.chch.2010

Band Together - Concert for Canterbury www.bandtogetherforcanterbury.co.nz 23rd October 2010 Free concrete in Hagley Park following the 4th September 2010 earthquake

Images, eqnz.chch.2010

Band Together - Concert for Canterbury www.bandtogetherforcanterbury.co.nz 23rd October 2010 Free concrete in Hagley Park following the 4th September 2010 earthquake

Images, UC QuakeStudies

Large cracks between concrete slabs in a pathway beside the Southern Region Coastguard Waimakariri-Ashley boathouse on Charles Street in Kaiapoi show how the land has slumped towards the river.

Research papers, The University of Auckland Library

Axial elongation of reinforced concrete (RC) plastic hinges has previously been observed in a range of laboratory experiments, and more recently was observed in several Christchurch buildings following the 2010/2011 Canterbury earthquakes. Axial restraint to plastic hinges is provided by adjacent structural components such as floors as the plastic hinges elongate, which can significantly alter the performance of the plastic hinge and potentially invalidate the capacity design strength hierarchy of the building. Coupling beams in coupled wall systems are particularly susceptible to axial restraint effects due to their importance in the strength hierarchy, the high ductility demands that they experience, and the large stiffness of bounding walls. From computational modelling it has been found that ignoring axial restraint effects when designing coupled walls can result in significantly increased strength, reduced ductility and reduced energy dissipation capacity. The complexity of the topic merits further research to better account for realistic restraint effects when designing coupled walls.

Research papers, University of Canterbury Library

Research following the 2010-2011 Canterbury earthquakes investigated the minimum vertical reinforcement required in RC walls to generate well distributed cracking in the plastic hinge region. However, the influence of the loading sequence and rate has not been fully addressed. The new minimum vertical reinforcement limits in NZS 3101:2006 (Amendment 3) include consideration of the material strengths under dynamic load rates, but these provisions have not been validated at a member or system level. A series of tests were conducted on RC prisms to investigate the effect of loading rate and sequence on the local behaviour of RC members. Fifteen axially loaded RC prisms with the designs representing the end region of RC walls were tested under various loading rates to cover the range of pseudo-static and earthquake loading scenarios. These tests will provide substantial data for understanding the local behaviour of RC members, including hysteretic load-deformation behaviour, crack patterns, failure mode, steel strain, strain rate and ductility. Recommendations will be made regarding the effect of loading rate and reinforcement content on the cracking behaviour and ductility of RC members.

Research papers, University of Canterbury Library

Slender precast concrete wall panels are currently in vogue for the construction of tall single storey warehouse type buildings. Often their height to thickness ratio exceed the present New Zealand design code (NZS 3101) limitations of 30:1. Their real performance under earthquake attack is unknown. Therefore, this study seeks to assess the dynamic performance of slender precast concrete wall panels with different base connection details. Three base connections (two fixed base and one rocking) from two wall specimens with height to thickness ratios of 60:1 were tested under dynamic loading. The two fixed based walls had longitudinal steel volumes of 1.27% to 0.54% and were tested on the University of Canterbury shaking table to investigate their proneness to out-of-plane buckling. Based on an EUler-type theoretical formula derived as part of the study, an explanation is made as to why walls with high in-plane capacity are more prone to buckling. The theory was validated against the present and past experimental evidence. The rocking base connection designed and built in accordance with a damage avoidance philosophy was tested on the shaking table in a similar fashion to the fixed base specimens. Results show that in contrast with their fixed base counterparts, rocking walls can indeed fulfil a damage-free design objective while also remaining stable under strong earthquake ground shaking.