Search

found 452 results

Images, UC QuakeStudies

A photograph of two workers beginning the clean-up and evacuation of a flat on Poplar Street during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes.

Images, UC QuakeStudies

Photograph captioned by Neil Macbeth, "Members of the Student Volunteer Army clearing liquefaction in earthquake-ravaged Avonside. The Student Volunteer Army are mostly University of Canterbury students who are helping to clean up the liquefaction from Christchurch properties.

Images, UC QuakeStudies

Photograph captioned by Neil Macbeth, "Members of the Student Volunteer Army clearing liquefaction in earthquake-ravaged Avonside. The Student Volunteer Army are mostly University of Canterbury students who are helping to clean up the liquefaction from Christchurch properties.

Images, UC QuakeStudies

Photograph captioned by Neil Macbeth, "Members of the Student Volunteer Army clearing liquefaction in earthquake-ravaged Avonside. The Student Volunteer Army are mostly University of Canterbury students who are helping to clean up the liquefaction from Christchurch properties.

Images, UC QuakeStudies

Photograph captioned by Neil Macbeth, "Members of the Student Volunteer Army clearing liquefaction in earthquake-ravaged Avonside. The Student Volunteer Army are mostly University of Canterbury students who are helping to clean up the liquefaction from Christchurch properties.

Research papers, University of Canterbury Library

In 2010 and 2011 a series of earthquakes hit the central region of Canterbury, New Zealand, triggering widespread and damaging liquefaction in the area of Christchurch. Liquefaction occurred in natural clean sand deposits, but also in silty (fines-containing) sand deposits of fluvial origin. Comprehensive research efforts have been subsequently undertaken to identify key factors that influenced liquefaction triggering and severity of its manifestation. This research aims at evaluating the effects of fines content, fabric and layered structure on the cyclic undrained response of silty soils from Christchurch using Direct Simple Shear (DSS) tests. This poster outlines preliminary calibration and verification DSS tests performed on a clean sand to ensure reliability of testing procedures before these are applied to Christchurch soils.