
Much of the CBD will be cordoned off and without power (as you should be able to spot) for quite some time as a result of the damage caused by February's deadly earthquake.
The impact of the Canterbury earthquake sequence of 2010-12 and its aftermath has been enormous. This inventory lists some of the thousands of community-led groups and initiatives across the region that have developed or evolved as a result of the quake. This inventory is the third such inventory to have been produced. The Christchurch Earthquake Activity Inventory was released by Landcare Research in May 2011, three months after the devastating 22 February 2011 earthquake. The second inventory, entitled An Inventory of Community-led Recovery Initiatives in Canterbury, was collated by Bailey Peryman and Dr Suzanne Vallance (Lincoln University) approximately one year after the February earthquake. The research for this third inventory was undertaken over a four month period from June to September 2013, and was conducted primarily through online searches.This research was undertaken with funding support from the Natural Hazards Platform and GNS, New Zealand.
The title is 'Gerry BrownLie?' and the cartoon shows the Minister for Earthquake recovery, Gerry Brownlee, saying 'I promise not to promise again'. The words 'Red Zone' appear beneath with the word 'faced' inserted between them. Context: The 'Red Zone' is the earthquake area in which houses cannot be rebuilt. Earthquake Minister Gerry Brownlee has apologised for falsely promising red zone homeowners they would be paid out for improvements to their house. Brownlee promised in June that, in some cases, home improvements like new kitchens would be included in the government settlement offer for red zone houses. But the offer is only valid if the improvement has added to the footprint of the house. (Press - 4 September 2011) Alternate version of DCDL-0018757 Quantity: 1 digital cartoon(s).
Cats, dogs, horses, parrots, rats, hedgehogs and turtles. Just like people, these animals were affected by the earthquakes in Christchurch. And two researchers have published a new book into just how big the impact of the September 2010 and February 2011 earthquakes were. 'Animals in Emergencies: Learning from the Christchurch Earthquakes' is co-authored by Canterbury University's associate professor Annie Potts, and former veterinary nurse Donelle Gadenne.
This presentation discusses recent empirical ground motion modelling efforts in New Zealand. Firstly, the active shallow crustal and subduction interface and slab ground motion prediction equations (GMPEs) which are employed in the 2010 update of the national seismic hazard model (NSHM) are discussed. Other NZ-specific GMPEs developed, but not incorporated in the 2010 update are then discussed, in particular, the active shallow crustal model of Bradley (2010). A brief comparison of the NZ-specific GMPEs with the near-source ground motions recorded in the Canterbury earthquakes is then presented, given that these recordings collectively provide a significant increase in observed strong motions in the NZ catalogue. The ground motion prediction expert elicitation process that was undertaken following the Canterbury earthquakes for active shallow crustal earthquakes is then discussed. Finally, ongoing GMPE-related activities are discussed including: ground motion and metadata database refinement, improved site characterization of strong motion station, and predictions for subduction zone earthquakes.
Text above reads 'Cathedral rebuild?... The cartoon shows the Christchurch Cathedral as a bouncy cathedral full of jumping children. Context - Debate about the rebuilding of the cathedral after it was severely damaged in the Christchurch earthquakes of 2010 and 2011. There is a strong view that it needs to remain an icon at the heart of the city. It may have to be brought down completely as engineers consider the future for the iconic building. Quantity: 1 digital cartoon(s).
Text at the top reads 'Bob's next speech?... The cartoon shows Christchurch Mayor Bob Parker making a speech - 'We shall fight on the beaches... We shall fight in the liquefaction... We shall fight in the cracks... We shall fight on the falling rocks and in the sinkholes... We shall fight in the portaloos... We shall fight in the sewage pipes... We shall fight in the polluted waters and subsided streets... We shall fight in the heritage buildings including the Dux de Lux... We shall NEVER surrender! A man leans over a fence and yells 'Hey Bob... How about a rewrite..."We shall raise the white flag and shall get the hell out!"' Context - The continuing earthquakes and aftershocks are causing serious problems in Christchurch, both practical and emotional. Many people are considering leaving the city. Quantity: 1 digital cartoon(s).
Video of an interview with Tom Hooper, Chief Executive of the Canterbury Development Corporation, about the experiences of businesses in the aftermath of the 2010 and 2011 Canterbury earthquakes. Hooper talks about the changes in the workforce, business innovation, and the benefits of collaboration in Christchurch. He also talks about the importance of having a disaster recovery plan. This video is part of a series about businesses in Christchurch after the earthquakes.
Shows a aerial representation of Christchurch's eastern suburbs with the course of the Avon River. The new river course spells the word 'munted'. Quantity: 1 digital cartoon(s).
An interested passerby assumes that a builder will be keen to get some EQC work fixing up Christchurch but the builder replies 'Are you kidding?! Not while EQC is paying us $4500 a week to do its assessments!' Context - The Earthquake Commission (EQC) has employed 414 contractors to carry out the assessments on its behalf, Radio New Zealand reported. Contractors carrying out property inspections of quake-damaged Christchurch homes are being paid about $4000 a week. Contractors are paid $75 an hour, while the builders, who inspect the damage, receive $60 an hour, the broadcaster said. (8 June 2011) Colour and black and white versions available Quantity: 2 digital cartoon(s).
A signpost pointing 'West' and 'East'. The sign pointing West is intact; that indicating East is broken and barely hanging on to the post. Refers to the condition of Christchurch City after the earthquakes of 2010 and 2011; the western wealthier suburbs were less damaged than the poorer Eastern suburbs. Also, progress on repair and rehabilitation of eastern housing had been slow. The redesign of the city centre seemed to be a western suburb priority which ignored the poverty and misery of living conditions on the east. Quantity: 1 digital cartoon(s).
This thesis is concerned with springs that appeared in the Hillsborough, Christchurch during the 2010-2011 Canterbury Earthquake Sequence, and which have continued to discharge groundwater to the surface to the present time. Investigations have evolved, measurements of discharge at selected sites, limited chemical data on anions and isotope analysis. The springs are associated with earthquake generated fissures (extensional) and compression zones, mostly in loess-colluvium soils of the valley floor and lower slopes. Extensive peat swamps are present in the Hillsborough valley, with a groundwater table at ~1m below ground. The first appearance of the ‘new’ springs took place following the Mw 7.1 Darfield Earthquake on 4 September 2010, and discharges increased both in volume and extent of the Christchurch Mw 6.3 Earthquake of 22 February 2011. Five monitored sites show flow rates in the range of 4.2-14.4L/min, which have remained effectively constant for the duration of the study (2014-2015). Water chemistry analysis shows that the groundwater discharges are sourced primarily from volcanic bedrocks which underlies the valley at depths ≤50m below ground level. Isotope values confirm similarities with bedrock-sourced groundwater, and the short term (hours-days) influence of extreme rainfall events. Cyclone Lusi (2013-2014) affects were monitored and showed recovery of the bedrock derived water signature within 72 hours. Close to the mouth of the valley sediments interfinger with Waimakiriri River derived alluvium bearing a distinct and different isotope signature. Some mixing is evident at certain locations, but it is not clear if there is any influence from the Huntsbury reservoir which failed in the Port Hills Earthquake (22 February 2011) and stored groundwater from the Christchurch artesian aquifer system (Riccarton Gravel).
In the first seven of eight frames astrologer Ken Moon predicts a 'black day ahead', a 'day of great shaking' and 'terror' and 'children crying' and 'people fleeing' and 'a day in May'. In the last frame people realize that he has seen, not an earthquake, but the budget. Context - After the two big earthquakes in Christchurch on 4 September 2010 and 22 February 2011, the so-called Moon Man, Ken Ring, backed away from his prediction that Christchurch would be whacked by a huge earthquake on the 20th of March 2011. His claims terrified Cantabrians and led to people fleeing Christchurch. The 2011 budget will be announced in May and predictions are that it will be a cost-cutting one because of New Zealand's debt, partially caused by the Christchurch earthquakes. Quantity: 1 digital cartoon(s).
The cartoon shows a rugby goalpost in a bad state of repair; it is held together with bandages and when a player kicks a ball that represents 'World Cup Games' towards the goalpost, it hits one of the side posts that flies a Christchurch flag, causing the post to break. Context - the decision that Christchurch will not be able to host any of the Rugby World Cup games because of the damage caused by the earthquakes of 4 September 2010 and 22 February 2011. Quantity: 1 digital cartoon(s).
We examined changes in psychological distress experienced by residents of Christchurch following two catastrophic earthquakes in late 2010 and early 2011, using data from the New Zealand Attitudes and Values Study (NZAVS), a national probability panel study of New Zealand adults. Analyses focused on the 267 participants (172 women, 95 men) who were living in central Christchurch in 2009 (i.e., before the Christchurch earthquakes), and who also provided complete responses to our yearly panel questionnaire conducted in late 2010 (largely between the two major earthquakes), late 2011, and late 2012. Levels of psychological distress were similar across the different regions of central Christchurch immediately following the September 2010 earthquake, and remained comparable across regions in 2011. By late 2012, however, average levels of psychological distress in the regions had diverged as a function of the amount of property damage experienced within each given region. Specifically, participants in the least damaged region (i.e., the Fendalton-Waimairi and Riccarton-Wigram wards) experienced greater drops in psychological distress than did those in the moderately damaged region (i.e., across the Spreydon-Heathcote and Hagley- Ferrymead wards). However, the level of psychological distress reported by participants in the most damaged region (i.e., across Shirley-Papanui and Burwood-Pegasus) were not significantly different to those in the least damaged region of central Christchurch. These findings suggest that different patterns of psychological recovery emerged across the different regions of Christchurch, with the moderately damaged region faring the worst, but only after the initial shock of the destruction had passed.
The paper presents preliminary findings from comprehensive research studies on the liquefaction-induced damage to buildings and infrastructure in Christchurch during the 2010-2011 Canterbury earthquakes. It identifies key factors and mechanisms of damage to road bridges, shallow foundations of CBD buildings and buried pipelines, and highlights the implications of the findings for the seismic analysis and design of these structures.
When the 2010 and 2011 earthquakes created a city-wide outdoor research laboratory, UC Civil Engineering Professor Misko Cubrinovski gathered as much information as possible. This work has been recognised by the American Society of Civil Engineers (ASCE), which is presenting him with the 2019 Ralph B. Peck Award for "outstanding contributions to the geotechnical engineering profession through the publication of several insightful field case histories"
Someone holds a mobile phone and sends a text 'CH CH WE R ALL IN THS 2 GTHR' (Christchurch we are all in this together). Context - On 22 February 2011 at 12:51 pm (NZDT), Christchurch experienced a major magnitude 6.3 earthquake, which resulted in severe damage and many casualties. A National State of Emergency has been declared. This followed on from an original magnitude 7.1 earthquake on 4 September 2010 which did far less damage and in which no-one died. Both colour and black and white versions of this cartoon are available Quantity: 2 digital cartoon(s).
he strong motion station at Heathcote Valley School (HVSC) recorded unusually high peak ground accelerations (2.21g vertical and 1.41g horizontal) during the February 2011 Christchurch earthquake. Ground motions recorded at HVSC in numerous other events also exhibited consistently higher intensities compared with nearby strong motion stations. We investigated the underlying causes of such high intensity ground motions at HVSC by means of 2D dynamic finite element analyses, using recorded ground motions during the 2010-2011 Canterbury earthquake sequence. The model takes advantage of a LiDAR-based digital elevation model (DEM) to account for the surface topography, while the geometry and dynamic properties of the surficial soils are characterized by seismic cone penetration tests (sCPT) and Multi-Channel Analyses of Surface Waves (MASW). Comparisons of simulated and recorded ground motions suggests that our model performs well for distant events, while for near-field events, ground motions recorded at the adopted reference station at Lyttelton Port are not reasonable input motions for the simulation. The simulations suggest that Rayleigh waves generated at the inclined interface of the surficial colluvium and underlying volcanic rock strongly affect the ground motions recorded at HVSC, in particular, being the dominant contributor to the recorded vertical motions.
A pdf copy of panel 5 of Guy Frederick's 'The Space Between Words' exhibition. The panel includes text from an interview with Jolene Parker about her experiences of the 2010 and 2011 Canterbury earthquake. Above this is an image of Parker sitting in the site of her grandmother's house, which was demolished after the earthquakes.
Disasters that significantly affect people typically result in the production of documents detailing disaster lessons. This was the case in the 2010 and 2011 Canterbury earthquakes, as government and emergency response agencies, community organisations, and the media, engaged in the practice of producing and reporting disaster lessons. This thesis examines the disaster lessons that were developed by emergent groups following the Canterbury earthquakes (4 September 2010 and 22 February 2011). It adopts a Foucauldian analysis approach to investigate both the construction of disaster lessons and to document how this practice has come to dominate postdisaster activity following the Canterbury earthquakes. The study involved an analysis of academic literature, public documents and websites and interviews with key members of a range of Canterbury based emergent community groups. This material was used to generate a genealogy of disaster lessons, which was given in order to generate an account of how disaster lessons emerged and have come to dominate as a practice of disaster management. The thesis then examines the genealogy through the concept of governmentality so as to demonstrate how this discourse of disaster lessons has come to be used as a governing rationale that shapes and guides the emergent groups conduct in postdisaster New Zealand.
The objective of this study is to examine the influence of near-fault motions on liquefaction triggering in Christchurch and neighboring towns during the 2010-2011 Canterbury earthquake sequence (CES). The CES began with the 4 September 2010, Mw7.1 Darfield earthquake and included up to ten events that triggered liquefaction. However, most notably, widespread liquefaction was induced by the Darfield earthquake and the Mw6.2, 22 February 2011 Christchurch earthquake. Of particular relevance to this study is the forward directivity effects that were prevalent in the motions recorded during the Darfield earthquake, and to a much lesser extent, during the Christchurch earthquake. A 2D variant of the Richart-Newmark fatigue theory was used to compute the equivalent number of cycles (neq) for the ground motions, where volumetric strain was used as the damage metric. This study is unique because it considers the contribution and phasing of both the fault-normal and fault-parallel components of motion on neq and the magnitude scaling factor (MSF). It was found that when the fault-normal and fault-parallel motions were treated individually, the former yielded a lower neq than the latter. Additionally, when the combined effects of fault-normal and fault-parallel components were considered, it was found that the MSF were higher than those commonly used. This implies that motions containing near-fault effects are less demanding on the soil than motions that do not. This may be one of several factors that resulted in less severe liquefaction occurring during the Darfield earthquake than the Christchurch earthquake.
The New Zealand Kellogg Rural Leaders Programme develops emerging agribusiness leaders to help shape the future of New Zealand agribusiness and rural affairs. Lincoln University has been involved with this leaders programme since 1979 when it was launched with a grant from the Kellogg Foundation, USA.At 4.35am on 4th September 2010, Canterbury was hit by an earthquake measuring 7.1 on the Richter scale. On 22nd February 2011 and 13th June 2011 a separate fault line approximately 35km from the first, ruptured to inflict two further earthquakes measuring 6.3 and 6.0 respectively. As a direct result of the February earthquake, 181 people lost their lives. Some commentators have described this series of earthquakes as the most expensive global insurance event of all time. These earthquakes and the more than 7000 associated aftershocks have had a significant physical impact on parts of Canterbury and virtually none on others. The economic, social and emotional impacts of these quakes spread across Canterbury and beyond. Waimakariri district, north of Christchurch, has reflected a similar pattern, with over 1400 houses requiring rebuild or substantial repair, millions of dollars of damage to infrastructure, and significant social issues as a result. The physical damage in Waimakiriri District was predominately in parts of Kaiapoi, and two small beach settlements, The Pines and Kairaki Beach with pockets elsewhere in the district. While the balance of the district is largely physically untouched, the economic, social, and emotional shockwaves have spread across the district. Waimakariri district consists of two main towns, Rangiora and Kaiapoi, a number of smaller urban areas and a larger rural area. It is considered mid-size in the New Zealand local government landscape. This paper will explore the actions and plans of Waimakiriri District Council (WDC) in the Emergency Management Recovery programme to provide context to allow a more detailed examination of the planning processes prior to, and subsequent to the earthquakes. This study looked at documentation produced by WDC, applicable legislation and New Zealand Emergency Management resources and other sources. Key managers and elected representatives in the WOC were interviewed, along with a selection of governmental and nongovernmental agency representatives. The interview responses enable understanding of how central Government and other local authorities can benefit from these lessons and apply them to their own planning. It is intended that this paper will assist local government organisations in New Zealand to evaluate their planning processes in light of the events of 2010/11 in Canterbury and the lessons from WDC.
The Catholic Cathedral is classified as a category 1 listed heritage building constructed largely of unreinforced stone masonry, and was significantly damaged in the recent Canterbury earthquakes of 2010 and 2011. In the 2010 event the building presented slight to moderta damage, meanwhile in the 2011 one experienced ground shaking in excess of its capacity leading to block failures and partial collapse of parts of the building, which left the building standing but still posing a significant hazard. In this paper we discuss the approach to develop the earthquake analysis of the building by 3D numerical simulations, and the results are compared/calibrated with the observed damage of the 2010 earthquake. Very accurate records were obtained during both earthquakes due to a record station located least than 80 m of distance from the building and used in the simulations. Moreover it is included in the model the soil structure interaction because it was observed that the ground and foundation played an important role on the seismic behavior of the structure. A very good agreement was found between the real observed damage and the nonlinear dynamic simulations described trough inelastic deformation (cracking) and building´s performance.
Liquefaction-induced lateral spreading in Christchurch and surrounding suburbs during the recent Canterbury Earthquake Sequence (2010-2011) caused significant damage to structures and lifelines located in close proximity to streams and rivers. Simplified methods used in current engineering practice for predicting lateral ground displacements exhibit a high degree of epistemic uncertainty, but provide ‘order of magnitude’ estimates to appraise the hazard. We wish to compare model predictions to field measurements in order to assess the model’s capabilities and limitations with respect to Christchurch conditions. The analysis presented focuses on the widely-used empirical model of Youd et al. (2002), developed based on multi-linear regression (MLR) of case history data from lateral spreading occurrence in Japan and the US. Two issues arising from the application of this model to Christchurch were considered: • Small data set of Standard Penetration Test (SPT) and soil gradation indices (fines content FC, and mean grain size, D50) required for input. We attempt to use widely available CPT data with site specific correlations to FC and D50. • Uncertainty associated with the model input parameters and their influence on predicted displacements. This has been investigated for a specific location through a sensitivity analysis.
Research on responses to trauma has historically focused on the negative repercussions of a struggle with adversity. However, more recently, researchers have begun to examine posttraumatic growth: the positive psychological change that emerges from the struggle with a potentially traumatic event. Associations have been found between posttraumatic growth and greater peritraumatic distress, greater objective severity of trauma exposure, greater perceived stressfulness of events, social support, female gender, cognitive and behavioural responses to trauma, and personality measures. Posttraumatic growth has been measured typically in individuals with varying levels of posttraumatic stress disorder symptoms and other psychological difficulties, such as depression and anxiety. Although some theory and research posits that higher resilience would prohibit posttraumatic growth, no studies have examined posttraumatic growth in a resilient sample. The Canterbury earthquake sequence of 2010 and 2011 involved potentially traumatic events that saw the community struggle with a variety of challenges. However, in the midst of earthquake destruction, some positive initiatives emerged, driven by locals. The Gap Filler project (using city spaces left empty from fallen buildings for art and interactive community projects) and the Student Volunteer Army (groups of volunteers coordinated to help others in need) are examples of this. In this context, it seemed likely that posttraumatic growth was occurring and might be seen in individuals who were coping well with challenges. Culture is theorised to influence the posttraumatic growth process (Calhoun, Cann, & Tedeschi, 2010), and the nature of the trauma undergone is also likely to influence the process of growth. The current thesis measures posttraumatic growth quantitatively and qualitatively in a New Zealand sample. It measures and describes posttraumatic growth in a resilient population after the earthquake sequence of 2010 and 2011 in Canterbury, New Zealand. Findings are used to test current models of posttraumatic growth for individuals coping well after trauma and to elaborate on mechanisms proposed by models such as the comprehensive model of posttraumatic growth (Calhoun et al., 2010) and the organismic valuing theory of growth through adversity (Joseph & Linley, 2005). Correlates of posttraumatic growth are examined and likely supporting factors of posttraumatic growth are identified for this population. Study 1 used quantitative analysis to explore correlates of posttraumatic growth and found that greater posttraumatic growth related to greater peritraumatic distress, greater perceived stressfulness of earthquake events, greater objective stressfulness of earthquake events, greater difficulty with stressful life events, less satisfaction with social support, and female gender. Findings from Study 1 give important detail about the nature of distress included in the comprehensive model of posttraumatic growth (Calhoun et al., 2010) for this population. Levels of posttraumatic growth were lower than those in North American studies but similar to those in a Chinese study. The current sample, however, showed lower endorsement of Relating to Others than the Chinese study, perhaps because of cultural differences. Study 2 used qualitative analysis to examine the experience of posttraumatic growth in the sample. The theme of ‘a greater sense of community’ was found and adds to the comprehensive model of posttraumatic growth, in that an expression of posttraumatic growth (a greater connection with others) can inform ongoing social processing in the posttraumatic growth process. Having a formal or informal role in earthquake recovery appeared to influence self-concept and reflection; this elaborates on the influence of role on reflection in Calhoun et al.’s model. Findings illustrate possible mechanisms of the organismic valuing process theorised by Joseph and Linley (2005). Implications include the importance of providing opportunities for individuals to take on a role after a crisis, encouraging them to act to respond to difficulties, and encouraging them to meet personal needs for relatedness, competence, and autonomy. Finding positive aspects to a difficult situation, as well as acknowledging adversity, can be supported in future to help individuals process their traumas. As a society, we can help individuals cope with adversity by providing ways they can meet their needs for relatedness, competence, and autonomy. Community groups likely provide opportunities for members to act in ways that meet such needs. This will allow them to effectively act to meet their needs in times of crisis.
The CBD is slowly being opened up and this is the post - earthquake result of Cashel Mall. A vibrant, fresh look with high end shopping in colourful container shops. A really good step forward for the city.
The CBD is slowly being opened up and this is the post - earthquake result of Cashel Mall. A vibrant, fresh look with high end shopping in colourful container shops. A really good step forward for the city.
The CBD is slowly being opened up and this is the post - earthquake result of Cashel Mall. A vibrant, fresh look with high end shopping in colourful container shops. A really good step forward for the city.
The CBD is slowly being opened up and this is the post - earthquake result of Cashel Mall. A vibrant, fresh look with high end shopping in colourful container shops. A really good step forward for the city.