Photograph captioned by BeckerFraserPhotos, "150 Lichfield Street".
A photograph of a wooden frame covered by a tarpaulin on Worcester Street, near Latimer Square.
One improvised toilet comprised of a wooden frame with a white plastic toilet seat and lid attached with screws and tape; underneath is a red Lifestyle brand 9.6 litre plastic bucket. Example of the portable toilet designed to be distributed by the Christchurch City Council following the 22 February 2011 earthquake. One common problem experienc...
A digital copy of a pen and ink and watercolour painting by Raymond Morris, titled, 'The Frame Workshop, Colombo Street, Sydenham'.
An extensive research program is on-going at the University of Canterbury, New Zealand to develop new technologies to permit the construction of multi-storey timber buildings in earthquake prone areas. The system combines engineered timber beams, columns and walls with ductile moment resisting connections using post-tensioned tendons and eventually energy dissipaters. The extensive experimental testing on post-tensioned timber building systems has proved a remarkable lateral response of the proposed solutions. A wide number of post-tensioned timber subassemblies, including beam-column connections, single or coupled walls and column-foundation connections, have been analysed in static or quasi-static tests. This contribution presents the results of the first dynamic tests carried out with a shake-table. Model frame buildings (3-storey and 5-storey) on one-quarter scale were tested on the shake-table to quantify the response of post-tensioned timber frames during real-time earthquake loading. Equivalent viscous damping values were computed for post-tensioned timber frames in order to properly predict their response using numerical models. The dynamic tests were then complemented with quasi-static push and pull tests performed to a 3-storey post-tensioned timber frame. Numerical models were included to compare empirical estimations versus dynamic and quasi-static experimental results. Different techniques to model the dynamic behaviour of post-tensioned timber frames were explored. A sensitivity analysis of alternative damping models and an examination of the influence of designer choices for the post-tensioning force and utilization of column armouring were made. The design procedure for post-tensioned timber frames was summarized and it was applied to two examples. Inter-storey drift, base shear and overturning moments were compared between numerical modelling and predicted/targeted design values.
A photograph of the earthquake damage to a building on the corner of Hereford and Madras Streets. Sections of the walls have crumbled, the bricks spilling onto the footpath below. The frame of a window has fallen onto the scaffolding, and many of the glass windows have smashed.
Currently there is a worldwide renaissance in timber building design. At the University of Canterbury, new structural systems for commercial multistorey timber buildings have been under development since 2005. These systems incorporate large timber sections connected by high strength post-tensioning tendons, and timber-concrete composite floor systems, and aim to compete with existing structural systems in terms of cost, constructability, operational and seismic performance. The development of post-tensioned timber systems has created a need for improved lateral force design approaches for timber buildings. Current code provisions for seismic design are based on the strength of the structure, and do not adequately account for its deformation. Because timber buildings are often governed by deflection, rather than strength, this can lead to the exceedence of design displacement limitations imposed by New Zealand codes. Therefore, accurate modeling approaches which define both the strength and deformation of post-tensioned timber buildings are required. Furthermore, experimental testing is required to verify the accuracy of these models. This thesis focuses on the development and experimental verification of modeling approaches for the lateral force design of post-tensioned timber frame and wall buildings. The experimentation consisted of uni-direcitonal and bi-directional quasi-static earthquake simulation on a two-thirds scale, two-storey post-tensioned timber frame and wall building with timber-concrete composite floors. The building was subjected to lateral drifts of up to 3% and demonstrated excellent seismic performance, exhibiting little damage. The building was instrumented and analyzed, providing data for the calibration of analytical and numerical models. Analytical and numerical models were developed for frame, wall and floor systems that account for significant deformation components. The models predicted the strength of the structural systems for a given design performance level. The static responses predicted by the models were compared with both experimental data and finite element models to evaluate their accuracy. The frame, wall and floor models were then incorporated into an existing lateral force design procedure known as displacement-based design and used to design several frame and wall structural systems. Predictions of key engineering demand parameters, such as displacement, drift, interstorey shear, interstorey moment and floor accelerations, were compared with the results of dynamic time-history analysis. It was concluded that the numerical and analytical models, presented in this thesis, are a sound basis for determining the lateral response of post-tensioned timber buildings. However, future research is required to further verify and improve these prediction models.
A photograph of the exposed frame of 154 Manchester Street.
The door and frame are the last parts of the Woolston Community Library to be demolished.
Damage to a house in Richmond. Bricks have fallen from the walls, exposing the wooden framing beneath.
An as-built reinforced concrete (RC) frame building designed and constructed according to pre-1970s code design construction practice has been recently tested on the shake table at the University of Canterbury. The specimen, 1/2.5 scaled version of the original prototype, consists of two 3-storey 2-bay asymmetric frames in parallel, one interior and one exterior, jointed together by transverse beams and floor slabs. Following the benchmark test, a retrofit intervention has been proposed to rehabilitate the tested specimen. In this paper, detailed information on the assessment and design of the seismic retrofit procedure using GFRP (glass fibre reinforced polymer) materials is given for the whole frame. Hierarchy of strength and sequence of events (damage mechanisms) in the panel zone region are evaluated using a moment-axial load (M-N) interaction performance domain, according to a performance-based retrofit philosophy. Specific limit states or design objectives are targeted with attention given to both strength and deformation limits. In addition, an innovative retrofit solution using FRP anchor dowels for the corner beam-column joints with slabs is proposed. Finally, in order to provide a practical tool for engineering practice, the retrofit procedure is provided in a step-by step flowchart fashion.
Damage to the Cranmer Courts. A section of the wall has crumbled, exposing the wooden framing and the interior of the building.
A damaged building on Lichfield Street. The brick facade has fallen from the upper storeys, exposing the wooden framing beneath.
Damage to a house, where the front wall has crumbled, revealing the timber framing. The fence around the house has also toppled over.
Damage to the Cranmer Courts. A section of the wall has crumbled, exposing the wooden framing and the interior of the building.
A photograph of bricks and wooden framing piled up in between a house and fence in Christchurch.
Detail of damage to the Cranmer Courts. A section of the wall has crumbled, exposing the wooden framing and the interior of the building.
Detail of damage to the Cranmer Courts. A section of the wall has crumbled, exposing the wooden framing and the interior of the building.
Bricks and a window frame fallen from the wall of a single-storey building. The gap left by the fallen wall has been covered with plywood sheeting.
Detail of damage to the Cranmer Courts. A section of the wall has crumbled, exposing the wooden framing and the interior of the building.
A photograph captioned by BeckerFraserPhotos, "The Hotel Grand Chancellor viewed from Lichfield street and framed by a digger boom".
Extended Direct Analysis (EDA), developed at the University of Canterbury, is an advance on the AISC Direct Analysis method for the analysis of frames subjected to static forces. EDA provides a faster, simple and more rational way to properly consider the second-order effects, initial residual stresses (IRS) and the initial imperfections or steel structures under one directional loading than conventional analysis methods. This research applied the EDA method to quantify the effect of member overstrength on frame behaviour for a single storey frame. Also, the effects of IRS, which were included in the EDA static analysis, but which are not considered explicitly in non-linear seismic analysis, were evaluated in two ways. Firstly, they were considered for simple structures subject to increasing cyclic displacement in different directions. Secondly, incremental dynamic analysis with realistic ground motion was used to quantify the likely effect of IRS in earthquakes. It was found that, contrary to traditional wisdom and practice, greater member strengths can result in lower frame strengths for frames under monotonic lateral loading. The structural lateral capacity of the overstrength case was reduced by 6% compared to the case using the dependable member strengths. Also, it resulted significantly different in member demands. Therefore, it is recommended that when either plastic analysis or EDA is used, that both upper and lower bounds on the likely member strength should be considered to determine the total frame strength and the member demands. Results of push-pull analysis under displacement control showed that for IRS ratio, gamma < 0.5 and axial compressive force ratio, N*/Ns, up to 0.5, IRS did affect the structural behaviour in the first half cycle. However, the behavior in the later cycles was not significantly affected. It also showed that the effect of initial residual stresses in the frame was less significant than for the column alone when the column was subjected to similar axial compressive force. The incremental dynamic analysis results from both cantilever column and the three-storey steel frame showed that by increasing gamma = 0 to 0.5, the effect of IRS on seismic responses, based on the 50% confidence level, was less than 3% for N*/Ns, up to 0.5.
Photograph captioned by BeckerFraserPhotos, "The construction of this window frame at Cranmer Court is clearly seen when the exterior stone has collapsed in the earthquake".
Cracks in the concrete foundation and wooden walls of a house on Avonside Drive. The photograph shows where the metal frame of the house's conservatory has come apart, and shards of glass from it can be seen on the footpath.
In three small frames above the main frame, milk tankers are shown bumping wildly over Christchurch roads made uneven by the earthquakes of September 4 2010 and February 22 2011; and in the large frame below a man is painting out the word 'milk' on a tanker and replacing it with the word 'butter'. Context - the bad roads caused by the erathquakes in Canterbury have turned the milk into butter. Colour and black and white versions available Title from file name Quantity: 2 digital cartoon(s).
The empty conservatory of house on Avonside Drive that has been abandoned due to damage from the 4 September 2010 earthquake. The metal frame of the conservatory has bent and sections of glass have broken. Cracks can be seen in the building's foundation.
A view down Victoria Street from the corner of Victoria Street and Bealey Avenue. On the left is the damaged Knox Church, where the brick has crumbled but the wooden roof frame is still intact. In front is a tent where the Army is guarding the cordon from.
A photograph of an Urban Search and Rescue team member removing a framed picture from the wall of a flat on Poplar Street during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes.
A photograph of the earthquake damage to the Christchurch Chinese Methodist Church on Papanui Road. The gable wall has crumbled, the bricks and window frame falling onto the ground. Wire fencing has been placed around the building as a cordon.
Damage to a house in Richmond. The brick wall is badly cracked and twisted, and some bricks have fallen, exposing the lining paper and framing below. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. I think it's broken".