Photograph captioned by BeckerFraserPhotos, "New construction at 39 Conference Street".
Press conference with the Mayor of Christchurch.
Finance Minister Bill English, and the Civil Defence Minister John Carter have a news conference at the Beehive theatrette.
Rural GPs from the South Island have been sharing their experiences of dealing with the aftermath of the Christchurch earthquake at a conference in Wellington.
The Canterbury Communities' Earthquake Recovery Network or CanCERN represents dozens of residents' associations and community groups. Tom McBrearty is chairman, whose own house has been badly affected.
Canterbury Earthquake updateRadio New Zealand Head of News Don Rood summarises the recent media conferences.
A video of a press conference with Anglican Bishop Victoria Matthews and Dean Peter Beck, about the interim plans for the earthquake-damaged ChristChurch Cathedral. In the press conference Matthews announces that the Cathedral will be deconsecrated, that parts of it will be demolished, and that the rest will be made safe. These measures will allow the recovery of artefacts and heritage items from the building.
The Prime Minister says he expects the death toll from this week's Christchurch earthquake will rise to more than two hundred.
None
More now from today's post cabinet news conference where the Prime Minister announced that a national memorial service to mark the Christchurch earthquake will be held in the city on Friday March the 18th.
Unreinforced masonry (URM) buildings have repeatedly been shown to perform poorly in large magnitude earthquakes, with both New Zealand and Australia having a history of past earthquakes that have resulted in fatalities due to collapsed URM buildings. A comparison is presented here of the URM building stock and the seismic vulnerability of Christchurch and Adelaide in order to demonstrate the relevance to Australian cities of observations in Christchurch resulting from the 2010/2011 Canterbury earthquake swarm. It is shown that the materials, architecture and hence earthquake strength of URM buildings in both countries is comparable and that Adelaide and other cities of Australia have seismic vulnerability sufficient to cause major damage to their URM buildings should a design level earthquake occur. Such an earthquake is expected to cause major building damage, and fatalities should be expected.
Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Nick Calvert from the video-conferencing team, Blair and Paul Nicholls behind. Nathan Gardiner with his head in a box".
Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Looking up the centre of the room towards the front doors. The video conferencing team and Nikki Saunders, the course reader publisher, sit here. (The pizzas are for a moving-in celebration held just after I took these photos.)
A press release from the United States Embassy New Zealand about the US-NZ Partnership Forum which was interrupted by the 22 February 2011 earthquake in Christchurch. Two months later, delegates from both New Zealand and the United States met in a video conference session designed to conclude the forum.
The M7.1 Darfield earthquake shook the town of Christchurch (New Zealand) in the early morning on Saturday 4th September 2010 and caused damage to a number of heritage unreinforced masonry buildings. No fatalities were reported directly linked to the earthquake, but the damage to important heritage buildings was the most extensive to have occurred since the 1931 Hawke‟s Bay earthquake. In general, the nature of damage was consistent with observations previously made on the seismic performance of unreinforced masonry buildings in large earthquakes, with aspects such as toppled chimneys and parapets, failure of gables and poorly secured face-loaded walls, and in-plane damage to masonry frames all being extensively documented. This report on the performance of the unreinforced masonry buildings in the 2010 Darfield earthquake provides details on typical building characteristics, a review of damage statistics obtained by interrogating the building assessment database that was compiled in association with post-earthquake building inspections, and a review of the characteristic failure modes that were observed.
Implementing seismic risk mitigation is a major challenge in many earthquake prone regions. The objective of this research is to investigate how property investment market practices can be used to enhance building owners’ decisions to improve seismic performance of earthquake prone buildings (EPBs). A case study method adopted, revealed the impacts of the property market stakeholders’ practices on seismic retrofit decisions. The findings from this research provide significant new insights on how property market-based incentives such as such as mandatory disclosure of seismic risks in all transactions in the property market, effective awareness seismic risk program and a unified earthquake safety assessment information system, can be used to enhance EPBs owners seismic retrofit decisions. These market-based incentives offer compelling reasons for the different property market stakeholders and the public at large to retain, care, invest, and act responsibly to rehabilitate EPBs. The findings suggest need for stakeholders involved in property investment and retrofit decisions to work together to foster seismic rehabilitation of EPBs.
Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Looking across the centre desks to the advisers' area".
The entrance to KB02, the University of Canterbury's Digital Media Group temporary office in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. The front doors. We'll need to advertise our presence once we're settled in".
Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Looking along the south wall, Herbert Thomas and Susan Tull already settled in and working".
Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Nikki Saunders, Lei Zhang (on the far wall), Nathan Gardiner and Blair - unpacking and settling in".
Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Looking back along the centre area from the doors. The e-learning advisers and Herbert Thomas, our team leader, sit along the south wall".
An overview of the 22 February 2011 Christchurch earthquake is presented in the context of characterization of extreme/rare events. Focus is given to the earthquake source, observed near-source strong ground motions, and effects of site response, while structural response and consequences are mentioned for completeness. For each of the above topics comparisons and discussions are made with predictive models for each of phenomena considered. In light of the observations and predictive model comparisons, the author’s opinion on improving the characterization of such extreme/rare events, and their appropriate consideration in seismic design is presented
The aftermath of three earthquakes has forced Christchurch to re-plan and rebuild. New perspectives of a sustainable city have arisen granting Christchurch the chance of becoming an example to the world. This work is centred on bioclimatic landscape design as a base for greening strategies. It deals with strategic landscape design adapted to a specific climate, from a user’s perspective. The investigation will be applied to Christchurch’s urban centres, assessing cultural adaptability to the local climate and implications for landscape design. Climatic data shows that humidity is not a local problem. However, the wind is the determinant. In Christchurch the solar radiation and the prevailing winds are the most important microclimatic variables, the latter intensifying the loss of surface heat, decreasing the radiant temperature and affecting thermal sensation. The research objective is to explore design parameters at the street-scale and identify ways to maximise thermal comfort in outdoor spaces through design-based strategies. The investigation will apply methods of participant observation, depth interviews, climatic data collection and design experimentation based on thermal comfort models and computer simulation tools. Case study sites chosen for investigation are places with current levels of activity that may be anticipated in the rebuild of the central city. The research will have two main outcomes: improved understanding of local urban culture adaptation to microclimate, and a demonstration of how design can enhance adaption. These outcomes will inform designers and city managers about good design practices and strategies that can be used to ensure a long term liveable city.
Paul Nicholls from the University of Canterbury's E-Learning team and Digital Media Group Manager Wayne Riggall in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Adjoining our area is a space for Wayne, the Digital Media Group Manager, who will organise a sitting area for visitors and small meetings. Beyond Wayne is a closed-off meeting room".
Paul Nicholls, a member of the University of Canterbury's E-Learning team, in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Closer view of our corner of the building. We will have some cubicle partitions soon, but I don't know how we'll configure the space then. It's quite nice being so open, but it may be too noisy".
Paul Nicholls, a member of the University of Canterbury's E-Learning team, in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Our "techy corner", with Paul waiting for the desk-assembler to come back and put his desk together. My desk is in the corner, and Jess is on the right of the window".
Blended learning plays an important role in many tertiary institutions but little has been written about the implementation of blended learning in times of adversity, natural disaster or crisis. This paper describes how, in the wake of the 22 February Canterbury earthquake, five teacher educators responded to crisis-driven changing demands and changing directions. Our narratives describe how blended learning provided students in initial teacher education programmes with some certainty and continuity during a time of civil emergency. The professional learning generated from our experiences provides valuable insights for designing and preparing for blended learning in times of crisis, as well as developing resilient blended learning programmes for the future.
Recent advances in timber design at the University of Canterbury have led to new structural systems that are appropriate for a wide range of building types, including multi-storey commercial office structures. These buildings are competitive with more traditional construction materials in terms of cost, sustainability and structural performance. This paper provides seismic design recommendations and analytical modelling approaches, appropriate for the seismic design of post-tensioned coupled timber wall systems. The models are based on existing seismic design theory for precast post-tensioned concrete, modified to more accurately account for elastic deformation of the timber wall systems and the influence of the floor system. Experimental test data from a two storey post-tensioned timber building, designed, constructed and tested at the University of Canterbury is used to validate the analytical models.
Following the September 2010 earthquake and the closure of a number of campus libraries, library staff at the University of Canterbury was forced to rethink how they connected with their users. The established virtual reference service now meant library staff could be contacted regardless of their physical location. After the February earthquake, with University library closures ranging from 3 weeks to indefinite, this service came into its own as a vital communication tool. It facilitated contact between the library and both students and academics, as well as proving invaluable as a means for library staff to locate and communicate with each other. Transcripts from our post-earthquake interactions with users were analyzed using NVivo and will be presented in poster format showing the increase in usage of the service following the earthquakes, who used the service most, and the numbers and types of questions received. Our virtual reference tool was well used in the difficult post-earthquake periods and we can see this usage continuing as university life returns to normal.
Disaster recovery is significantly affected by funding availability. The timeliness and quality of recovery activities are not only impacted by the extent of the funding but also the mechanisms with which funding is prioritised, allocated and delivered. This research addresses the impact of funding mechanisms on the effectiveness and efficiency of post-disaster demolition and debris management programmes. A qualitative assessment of the impacts on recovery of different funding sources and mechanisms was carried out, using the 2010 Canterbury Earthquake as well as other recent international events as case studies. The impacts assessed include: timeliness, completeness, environmental, economic and social impacts. Of the case studies investigated, the Canterbury Earthquake was the only disaster response to rely solely on a privatised approach to insurance for debris management. Due to the low level of resident displacement and low level of hazard in the waste, this was a satisfactory approach, though not ideal. This approach has led to greater organisational complexity and delays. For many other events, the potential community wide impacts caused by the prolonged presence of disaster debris means that publicly funded and centrally facilitated programmes appear to be the most common and effective method of managing disaster waste.