Search

found 43 results

Videos, NZ On Screen

This booster's gem was produced by the NFU to mark Canterbury's centennial. The original Canterbury crusaders' dream of a model England colony is shown in settler life re-enactments. The importance of meat and wheat to the region's prosperity is extolled and a progressive narrative — "in one brief century they've turned the wilderness into fertile farms and built their red-roofed homes" — underpins contemporary scenes (cricket, church) and much bucolic (plains, alps) scenery. Trivia: Peter Jackson used an excerpt from the film to open Heavenly Creatures.

Images, UC QuakeStudies

A stall selling mosaics of broken mirrors in the shape of houses, crosses and cathedrals. The photographer comments, "The Quake Art on sale at the AandP Show in Christchurch".

Images, UC QuakeStudies

Two diggers on top of a pile of rubble inside the partially demolished Ozone Dressing Sheds building. The photographer comments, "The Ozone must have suffered in the February earthquake more than people thought. They were starting to repaint it inside, but it looks like they must have run out of filler".

Videos, NZ On Screen

This promotional travelogue, made for the Christchurch City Council, shows off the city and its environs. Filmed at a time when New Zealand’s post-war economy was booming as it continued its role as a farmyard for the “Old Country”, it depicts Christchurch as a prosperous city, confident in its green and pleasant self-image as a “better Britain” (as James Belich coined NZ’s relationship to England), and architecturally dominated by its cathedrals, churches and schools. Many of these buildings were severely damaged or destroyed in the earthquakes of 2010 and 2011.

Research papers, University of Canterbury Library

Live monitoring data and simple dynamic reduced-order models of the Christchurch Women’s Hospital (CWH) help explain the performance of the base isolation (BI) system of the hospital during the series of Canterbury earthquakes in 2011-2012. A Park-Wen-Ang hysteresis model is employed to simulate the performance of the BI system and results are compared to measured data recorded above the isolation layer and on the 6th story. Simplified single, two and three degree of freedom models (SDOF, 2DOF and 3DOF) show that the CWH structure did not behave as an isolated but as a fixed-base structure. Comparisons of accelerations and deflections between simulated and monitored data show a good match for isolation stiffness values of approximately two times of the value documented in the design specification and test protocol. Furthermore, an analysis of purely measured data revealed very little to no relative motion across the isolators for large events of moment magnitude scale (Mw) 5.8 and 6.0 that occurred within 3 hours of each other on December 23, 2011. One of the major findings is that the BI system during the seismic events on December 23, 2011 did not yield and that the superstructure performed as a fixed-base building, indicating a need to reevaluate the analysis, design and implementation of these structures.

Research papers, University of Canterbury Library

In order to provide information related to seismic vulnerability of non-ductile reinforced concrete (RC) frame buildings, and as a complementary investigation on innovative feasible retrofit solutions developed in the past six years at the University of Canterbury on pre-19170 reinforced concrete buildings, a frame building representative of older construction practice was tested on the shake table. The specimen, 1/2.5 scale, consists of two 3-storey 2-bay asymmetric frames in parallel, one interior and one exterior, jointed together by transverse beams and floor slabs. The as-built (benchmark) specimen was first tested under increasing ground motion amplitudes using records from Loma Prieta Earthquake (California, 1989) and suffered significant damage at the upper floor, most of it due to lap splices failure. As a consequence, in a second stage, the specimen was repaired and modified by removing the concrete in the lap splice region, welding the column longitudinal bars, replacing the removed concrete with structural mortar, and injecting cracks with epoxy resin. The modified as-built specimen was then tested using data recorded during Darfield (New Zealand, 2010) and Maule (Chile, 2010) Earthquakes, with whom the specimen showed remarkably different responses attributed to the main variation in frequency content and duration. In this contribution, the seismic performance of the three series of experiments are presented and compared.