Christchurch’s architecture, both new and old, has been brought to life in an illustrated walking book that pays homage to the city’s historical buildings and showcases its new direction in the post-earthquake era.
Some of the most common archaeological finds related to the European settlement of New Zealand during 19th century are usually from residential occupation. Features like rubbish pits, underfloor deposits, wells (brick and artesian), cesspits, soak pits, post holes and drainage … Continue reading →
A pdf transcript of Heather's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Sripana Saha. Transcriber: Samuel Hope.
A pdf transcript of Flora Anni Mamaeroa Mcgregor (Flo)'s second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Destiny Wiringi. Transcriber: Maggie Blackwood.
During the 21st century, New Zealand has experienced increasing public concern over the quality of the design and appearance of new developments, and their effects on the urban environment. In response to this, a number of local authorities developed a range of tools to address this issue, including urban design panels to review proposals and provide independent advice. Following the 2010 and 2011 Canterbury earthquake sequence, the commitment to achieve high quality urban design within Christchurch was given further importance, with the city facing the unprecedented challenge of rebuilding a ‘vibrant and successful city’.
The rebuild and regeneration reinforced the need for independent design review, putting more focus and emphasis on the role and use of the urban design panel; first through collaboratively assisting applicants in achieving a better design outcome for their development by providing an independent set of eyes on their design; and secondly in assisting Council officers in forming their recommendations on resource consent decisions. However, there is a perception that urban design and the role of the urban design panel is not fully understood, with some stakeholders arguing that Council’s urban design requirements are adding cost and complexity to their developments.
The purpose of this research was to develop a better understanding on the role of the Christchurch urban design panel post-earthquake in the central city; its direct and indirect influence on the built environment; and the deficiencies in the broader planning framework and institutional settings that it might be addressing. Ultimately, the perceived role of the Panel is understood, and there is agreement that urban design is having a positive influence on the built environment, albeit viewed differently amongst the varying groups involved. What has become clear throughout this research is that the perceived tension between the development community and urban design well and truly exists, with the urban design panel contributing towards this. This tension is exacerbated further through the cost of urban design to developers, and the drive for financial return from their investments.
The panel, albeit promoting a positive experience, is simply a ‘tick box’ exercise for some, and as the research suggests, groups or professional are determining themselves what constitutes good urban design, based on their attitude, the context in which they sit and the financial constraints to incorporate good design elements. It is perhaps a bleak time for urban design, and more about building homes.
A pdf transcript of Participant number QB006's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Lucy Denham.
A pdf transcript of Danny's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Josie Hepburn.
This research investigates creativity in a post-disaster setting. The data explore creativity at the intersection of the affected community of Christchurch, New Zealand and the social processes that followed the earthquakes of 2010 - 2012. Personal and contextual influences on creative ideas implemented for community or commercial benefit are also examined.
Viewed as creative, unique approaches to post-disaster problem solving were celebrated locally, nationally and internationally (Bergman, 2014; Wesener, 2015; Cloke & Conradson, 2018). Much has been written about creativity, particularly creativity in organisations and in business. However, little is known with regards to who creates after a disaster, why individuals choose to do so and what impact the post-disaster context has on their creative activity. This exploratory study draws on the literature from the fields of creativity, disasters, psychology, sociology and entrepreneurship to interpret first-hand accounts of people who acted on creative ideas in a physically and socially altered environment.
A mixed method - albeit predominantly qualitative - approach to data gathering was adopted that included interviews (n=45) with participants who had been the primary drivers of creative ideas implemented in Christchurch after September 2010 – the first major (7.1 magnitude) earthquake in a prolonged sequence of thousands of aftershocks.
Key findings include that a specific type of creativity results from the ‘collision’ between individuals and social processes activated by a disaster situation. This type of creativity could be best categorised as ‘little c’ or socially adaptive and emerges through a prosocial filter. There is wide consensus amongst creativity researchers - principally social psychologists - that for output to be considered creative it must be both novel and useful (Runco & Jaegar, 2012). There is greater tolerance for the novelty component after a disaster as novelty itself has greater utility, either as a distraction or because alternatives are few. Existing creativity models show context as input – an additional component of the creative process – but after a disaster the event itself becomes the catalyst for social processes that result in the creativity seen. Most participants demonstrated characteristics commonly associated with creativity and could be categorised as either a ‘free thinker’ and/or an ‘opportunist’. Some appear preadapted to create and thrive in unstable circumstances.
Findings from participants’ completion of a Ten Item Personality Inventory (TIPI) showed an apparent reduced need for extraversion in relation to implementing creative ventures in society. This factor, along with higher levels of agreeableness may indicate a potentially detrimental effect on the success of creative ideas established after a disaster, despite earnest intentions.
Three new models are presented to illustrate the key findings of this study. The models imply that disasters enhance both the perceived value of creativity and the desire to act creatively for prosocial ends. The models also indicate that these disaster influenced changes are likely to be temporary.
A pdf transcript of Nicolas Warren's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Sriparna Saha. Transcriber: Samuel Hope.
A pdf transcript of Participant number LY677's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Josie Hepburn.
A pdf transcript of Lois Mathie's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Natalie Looyer.
An edited copy of the pdf transcript of Michelle's second earthquake story, captured by the UC QuakeBox Take 2 project. At the participant's request, parts of this transcript have been redacted. Interviewer: Jennifer Middendorf. Transcriber: Josie Hepburn.
A pdf transcript of Sally Roome's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Jennifer Middendorf.
Post-tensioned timber technology was originally developed and researched at the University of Canterbury (UC) in New Zealand in 2005. It can provide a low-damage seismic design solution for multi-storey mass timber buildings. Since mass timber products, such as cross-laminated timber (CLT), have high in-plane stiffness, a post-tensioned timber shear wall will deform mainly in a rocking mechanism. The moment capacity of the wall at the base is commonly determined using the elastic form of the Modified Monolithic Beam Analogy (MMBA). In the calculation of the moment capacity at the wall base, it is critical to accurately predict the location of the neutral axis and the timber compressive stress distribution. Three 2/3 scale 8.6m tall post-tensioned CLT walls were experimentally tested under quasi-static cyclic loading – both uni-directional and bi-directional- in this study. These specimens included a single wall, a coupled wall, and a C-shaped core-wall. The main objective was to develop post-tensioned C-shaped timber core-walls for tall timber buildings with enhanced lateral strength and stiffness. To better understand the timber compressive stress distributions at the wall base, particle tracking technology (PTT) technology was applied for the first time to investigate the behaviour of the compression toe. Previous post-tensioned timber testing primarily used the displacement measurements to determine the timber compressive behavior at the wall base or rocking interfaces. However, by using PTT technology, the timber strain measurements in the compression zone can be much more accurate as PTT is able to track the movement of many particles on the timber surface. This paper presents experimental testing results of post-tensioned CLT walls with a focus on capturing timber compressive behavior using PTT. The PTT measurements were able to better capture small base rotations which occurred at the onset of gap opening and capture unexpected phenomena in core-wall tests. The single wall test result herein presented indicates that while the MMBA could predict the moment rotation behavior with reasonable accuracy, the peak strain response was under predicted in the compression toe. Further detailed study is required to better understand the complex strain fields generated reflective of the inherent cross-thickness inhomogeneity and material variability of CLT.
A pdf transcript of Participant number EG138's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Samuel Hope.
A pdf transcript of Participant number QB005's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Lucy Denham.
A pdf transcript of Kathryn's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Joshua Black. Transcriber: Maggie Blackwood.
A pdf transcript of Peter Ngatuere's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Lucy Denham.
A pdf transcript of Heather Bundy's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Josie Hepburn.
An edited copy of the pdf transcript of Laura's second earthquake story, captured by the UC QuakeBox Take 2 project. At the participant's request, parts of this transcript have been redacted. Interviewer: Jennifer Middendorf. Transcriber: Laura Moir.
A pdf transcript of Mutu's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Maggie Blackwood.
A pdf transcript of Robin Robins's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Maggie Blackwood.
A pdf transcript of Ina Wit's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Sriparna Saha. Transcriber: Natalie Looyer.
After a high-intensity seismic event, inspections of structural damages need to be carried out as soon as possible in order to optimize the emergency management, as well as improving the recovery time. In the current practice, damage inspections are performed by an experienced engineer, who physically inspect the structures. This way of doing not only requires a significant amount of time and high skilled human resources, but also raises the concern about the inspector’s safety. A promising alternative is represented using new technologies, such as drones and artificial intelligence, which can perform part of the damage classification task. In fact, drones can safely access high hazard components of the structures: for instance, bridge piers or abutments, and perform the reconnaissance by using highresolution cameras. Furthermore, images can be automatically processed by machine learning algorithms, and damages detected. In this paper, the possibility of applying such technologies for inspecting New Zealand bridges is explored. Firstly, a machine-learning model for damage detection by performing image analysis is presented. Specifically, the algorithm was trained to recognize cracks in concrete members. A sensitivity analysis was carried out to evaluate the algorithm accuracy by using database images. Depending on the confidence level desired,i.e. by allowing a manual classification where the alghortim confidence is below a specific tolerance, the accuracy was found reaching up to 84.7%. In the second part, the model is applied to detect the damage observed on the Anzac Bridge (GPS coordinates -43.500865, 172.701138) in Christchurch by performing a drone reconnaissance. Reults show that the accuracy of the damage detection was equal to 88% and 63% for cracking and spalling, respectively.
The 2013 Seddon earthquake (Mw 6.5), the 2013 Lake Grassmere earthquake (Mw 6.6), and the 2016 Kaikōura earthquake (Mw 7.8) provided an opportunity to assemble the most extensive damage database to wine storage tanks ever compiled worldwide. An overview of this damage database is presented herein based on the in-field post-earthquake damage data collected for 2058 wine storage tanks (1512 legged tanks and 546 flat-based tanks) following the 2013 earthquakes and 1401 wine storage tanks (599 legged tanks and 802 flat-based tanks) following the 2016 earthquake. Critique of the earthquake damage database revealed that in 2013, 39% and 47% of the flat-based wine tanks sustained damage to their base shells and anchors respectively, while due to resilience measures implemented following the 2013 earthquakes, in the 2016 earthquake the damage to tank base shells and tank anchors of flat-based wine tanks was reduced to 32% and 23% respectively and instead damage to tank barrels (54%) and tank cones (43%) was identified as the two most frequently occurring damage modes for this type of tank. Analysis of damage data for legged wine tanks revealed that the frame-legs of legged wine tanks sustained the greatest damage percentage among different parts of legged tanks in both the 2013 earthquakes (40%) and in the 2016 earthquake (44%). Analysis of damage data and socio-economic findings highlight the need for industry-wide standards, which may have socio-economic implications for wineries.
A pdf transcript of Sarah Shaw's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Samuel Hope.
A pdf transcript of Jan's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Maggie Blackwood.
A pdf transcript of Participant number LY967's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Maggie Blackwood.
A pdf transcript of Fiona Robertson's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Natalie Looyer.
A pdf transcript of Julie's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Rosemary Du Plessis. Transcriber: Natalie Looyer.