An entry from Deb Robertson's blog for 22 May 2011 entitled, "Sew Mama Sew Giveaway Day...".
An entry from Deb Robertson's blog for 15 June 2011 entitled, "There has been more earthquakes but we are ok...".
An entry from Deb Robertson's blog for 26 June 2011 entitled, "Four quilts on a fence = a productive weekend!".
An entry from Deb Robertson's blog for 12 May 2011 entitled, "Another Quilt on another fence...".
An entry from Deb Robertson's blog for 22 June 2011 entitled, "It's not just the water and food you need in an emergency...".
An entry from Deb Robertson's blog for 11 August 2011 entitled, "[[Beautiful Quilt Pictures]]".
An entry from Deb Robertson's blog for 30 September 2011 entitled, "Hurray! Good news...".
An entry from Deb Robertson's blog for 18 November 2011 entitled, "It must be November cause the Works in Progress pile has gone CRAZY...".
An entry from Deb Robertson's blog for 25 December 2011 entitled, "Merry Christmas....".
An entry from Deb Robertson's blog for 3 August 2011 entitled, "Drum roll please.... It's the asterisk quilt!!!".
An entry from Deb Robertson's blog for 9 October 2011 entitled, "It's spring in Christchurch...".
An entry from Deb Robertson's blog for 2 November 2011 entitled, "Bloggers Quilt Festival: My Picking up the Pieces Quilt".
An entry from Deb Robertson's blog for 17 September 2011 entitled, "Look what I found in my sewing room (1)".
An entry from Deb Robertson's blog for 27 May 2011 entitled, "I just love a scrap quilt...".
In the early morning of 4th September 2010 the region of Canterbury, New Zealand, was subjected to a magnitude 7.1 earthquake. The epicentre was located near the town of Darfield, 40 km west of the city of Christchurch. This was the country’s most damaging earthquake since the 1931 Hawke’s Bay earthquake (GeoNet, 2010). Since 4th September 2010 the region has been subjected to thousands of aftershocks, including several more damaging events such as a magnitude 6.3 aftershock on 22nd February 2011. Although of a smaller magnitude, the earthquake on 22nd February produced peak ground accelerations in the Christchurch region three times greater than the 4th September earthquake and in some cases shaking intensities greater than twice the design level (GeoNet, 2011; IPENZ, 2011). While in September 2010 most earthquake shaking damage was limited to unreinforced masonry (URM) buildings, in February all types of buildings sustained damage. Temporary shoring and strengthening techniques applied to buildings following the Darfield earthquake were tested in February 2011. In addition, two large aftershocks occurred on 13th June 2011 (magnitudes 5.7 and 6.2), further damaging many already weakened structures. The damage to unreinforced and retrofitted clay brick masonry buildings in the 4th September 2010 Darfield earthquake has already been reported by Ingham and Griffith (2011) and Dizhur et al. (2010b). A brief review of damage from the 22nd February 2011 earthquake is presented here
As part of the 'Project Masonry' Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. In addition, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake and brief suggestions are provided regarding appropriate seismic retrofit and remediation techniques for stone masonry buildings. http://www.nzsee.org.nz/publications/nzsee-quarterly-bulletin/
The sequence of earthquakes that has greatly affected Christchurch and Canterbury since September 2010 has again demonstrated the need for seismic retrofit of heritage unreinforced masonry buildings. Commencing in April 2011, the damage to unreinforced stone masonry buildings in Christchurch was assessed and recorded with the primary objective being to document the seismic performance of these structures, recognising that they constitute an important component of New Zealand’s heritage architecture. A damage statistics database was compiled by combining the results of safety evaluation placarding and post-earthquake inspections, and it was determined that the damage observed was consistent with observations previously made on the seismic performance of stone masonry structures in large earthquakes. Details are also given on typical building characteristics and on failure modes observed. Suggestions on appropriate seismic retrofit and remediation techniques are presented, in relation also to strengthening interventions that are typical for similar unreinforced stone masonry structures in Europe.
The Christchurch region of New Zealand experienced a series of major earthquakes and aftershocks between September 2010 and June 2011 which caused severe damage to the city’s infrastructure. The performance of tilt-up precast concrete buildings was investigated and initial observations are presented here. In general, tilt-up buildings performed well during all three major earthquakes, with mostly only minor, repairable damage occurring. For the in-plane loading direction, both loadbearing and cladding panels behaved exceptionally well, with no significant damage or failure observed in panels and their connections. A limited number of connection failures occurred due to large out-of-plane panel inertia forces. In several buildings, the connections between the panel and the internal structural frame appeared to be the weakest link, lacking in both strength and ductility. This weakness in the out-of-plane load path should be prevented in future designs.
This paper presents preliminary field observations on the performance of selected steel structures in Christchurch during the earthquake series of 2010 to 2011. This comprises 6 damaging earthquakes, on 4 September and 26 December 2010, February 22, June 6 and two on June 13, 2011. Most notable of these was the 4 September event, at Ms7.1 and MM7 (MM as observed in the Christchurch CBD) and most intense was the 22 February event at Ms6.3 and MM9-10 within the CBD. Focus is on performance of concentrically braced frames, eccentrically braced frames, moment resisting frames and industrial storage racks. With a few notable exceptions, steel structures performed well during this earthquake series, to the extent that inelastic deformations were less than what would have been expected given the severity of the recorded strong motions. Some hypotheses are formulated to explain this satisfactory performance. http://db.nzsee.org.nz/SpecialIssue/44%284%290297.pdf
The region in and around Christchurch, encompassing Christchurch city and the Selwyn and Waimakariri districts, contains more than 800 road, rail, and pedestrian bridges. Most of these bridges are reinforced concrete, symmetric, and have small to moderate spans (15–25 m). The 22 February 2011 moment magnitude (Mw) 6.2 Christchurch earthquake induced high levels of localized ground shaking (Bradley and Cubrinovski 2011, page 853 of this issue; Guidotti et al. 2011, page 767 of this issue; Smyrou et al. 2011, page 882 of this issue), with damage to bridges mainly confined to the central and eastern parts of Christchurch. Liquefaction was evident over much of this part of the city, with lateral spreading affecting bridges spanning both the Avon and Heathcote rivers.
The M7.1 Darfield earthquake shook the town of Christchurch (New Zealand) in the early morning on Saturday 4th September 2010 and caused damage to a number of heritage unreinforced masonry buildings. No fatalities were reported directly linked to the earthquake, but the damage to important heritage buildings was the most extensive to have occurred since the 1931 Hawke‟s Bay earthquake. In general, the nature of damage was consistent with observations previously made on the seismic performance of unreinforced masonry buildings in large earthquakes, with aspects such as toppled chimneys and parapets, failure of gables and poorly secured face-loaded walls, and in-plane damage to masonry frames all being extensively documented. This report on the performance of the unreinforced masonry buildings in the 2010 Darfield earthquake provides details on typical building characteristics, a review of damage statistics obtained by interrogating the building assessment database that was compiled in association with post-earthquake building inspections, and a review of the characteristic failure modes that were observed.
Unreinforced masonry (URM) buildings have repeatedly been shown to perform poorly in large magnitude earthquakes, with both New Zealand and Australia having a history of past earthquakes that have resulted in fatalities due to collapsed URM buildings. A comparison is presented here of the URM building stock and the seismic vulnerability of Christchurch and Adelaide in order to demonstrate the relevance to Australian cities of observations in Christchurch resulting from the 2010/2011 Canterbury earthquake swarm. It is shown that the materials, architecture and hence earthquake strength of URM buildings in both countries is comparable and that Adelaide and other cities of Australia have seismic vulnerability sufficient to cause major damage to their URM buildings should a design level earthquake occur. Such an earthquake is expected to cause major building damage, and fatalities should be expected.
A PDF copy of The Star newspaper, published on Saturday 13 August 2011.
A PDF copy of The Star newspaper, published on Saturday 24 September 2011.
A PDF copy of The Star newspaper, published on Wednesday 1 June 2011.
A story submitted by Mike Williams to the QuakeStories website.
A photograph of the earthquake damage to 127-133 Manchester Street.
As a man and a woman walk along the man comments that 'for 2 minutes yesterday people were joined as one in a spirit of caring and thoughtful reflection...' The woman, speaking about their personal life, wonders why they only ever manage 2 minutes of that. Context - at 12.51 pm on Tuesday 1 March 2011 (exactly a week after the catastrophic Christchurch earthquake of 22 February) all of New Zealand stopped for two minutes of silent contemplation. Quantity: 1 digital cartoon(s).
The cartoon is drawn as a game of 'Quakeopoly' in which earthquakes, aftershocks, assessment waits, stress etc. allow one to move from one square to the next but players are always forced backwards and can never win. Context - The Canterbury earthquakes of 4 September 2010 and 22 February 2011 and the continuing aftershocks. Quantity: 1 digital cartoon(s).
Text across the top of the cartoon reads 'always design in context' There is a globe, small in the context, with a little message reading 'you are here' pointing, perhaps, to New Zealand or even more specifically, Christchurch; the globe is being threatened from all sides by forces of nature represented by the hand of god reaching out of clouds. Context - the Christchurch earthquakes of 4 September 2010 and 22 February 2011 and the idea that buildings must be designed in the context of their environment - NZ being earthquake-prone. Perhaps also the idea of 'design in context' in a broader sense. Quantity: 1 digital cartoon(s).