Search

found 311 results

Research papers, University of Canterbury Library

Abstract This study provides a simplified methodology for pre-event data collection to support a faster and more accurate seismic loss estimation. Existing pre-event data collection frameworks are reviewed. Data gathered after the Canterbury earthquake sequences are analysed to evaluate the relative importance of different sources of building damage. Conclusions drawns are used to explore new approaches to conduct pre-event building assessment.

Research papers, University of Canterbury Library

The latest two great earthquake sequences; 2010- 2011 Canterbury Earthquake and 2016 Kaikoura Earthquake, necessitate a better understanding of the New Zealand seismic hazard condition for new building design and detailed assessment of existing buildings. It is important to note, however, that the New Zealand seismic hazard map in NZS 1170.5.2004 is generalised in effort to cover all of New Zealand and limited to a earthquake database prior to 2001. This is “common” that site-specific studies typically provide spectral accelerations different to those shown on the national map (Z values in NZS 1170.5:2004); and sometimes even lower. Moreover, Section 5.2 of Module 1 of the Earthquake Geotechnical Engineering Practice series provide the guidelines to perform site- specific studies.

Research papers, University of Canterbury Library

Overview of SeisFinder SeisFinder is an open-source web service developed by QuakeCoRE and the University of Canterbury, focused on enabling the extraction of output data from computationally intensive earthquake resilience calculations. Currently, SeisFinder allows users to select historical or future events and retrieve ground motion simulation outputs for requested geographical locations. This data can be used as input for other resilience calculations, such as dynamic response history analysis. SeisFinder was developed using Django, a high-level python web framework, and uses a postgreSQL database. Because our large-scale computationally-intensive numerical ground motion simulations produce big data, the actual data is stored in file systems, while the metadata is stored in the database. The basic SeisFinder architecture is shown in Figure 1.

Research papers, University of Canterbury Library

This study examines the performance of nonlinear total-stress wave-propagation site response analysis for modelling site effects in physics-based ground motion simulations of the 2010-2011 Canterbury, New Zealand earthquake sequence. This approach allows for explicit modeling of 3-dimensional ground motion phenomena at the regional scale, as well as detailed site effects and soil nonlinearity at the local scale. The approach is compared to a more commonly used empirical VS30 (30 m time-averaged shear wave velocity)-based method for computing site amplification as proposed by Graves and Pitarka (2010, 2015).

Research papers, University of Canterbury Library

Non-structural elements (NSEs) have frequently proven to contribute to significant losses sustained from earthquakes in the form of damage, downtime, injury and death. In New Zealand (NZ), the 2010 and 2011 Canterbury Earthquake Sequence (CES), the 2013 Seddon and Cook Strait earthquake sequence and the 2016 Kaikoura earthquake were major milestones in this regard as significant damage to building NSEs both highlighted and further reinforced the importance of NSE seismic performance to the resilience of urban centres. Extensive damage in suspended ceilings, partition walls, façades and building services following the CES was reported to be partly due to erroneous seismic design or installation or caused by intervening elements. Moreover, the low-damage solutions developed for structural systems sometimes allow for relatively large inter-story drifts -compared to conventional designs- which may not have been considered in the seismic design of NSEs. Having observed these shortcomings, this study on suspended ceilings was carried out with five main goals: i) Understanding the seismic performance of the system commonly used in NZ; ii) Understanding the transfer of seismic design actions through different suspended ceiling components, iii) Investigating potential low-damage solutions; iii) Evaluating the compatibility of the current ceiling system with other low-damage NSEs; and iv) Investigating the application of numerical analysis to simulate the response of ceiling systems. The first phase of the study followed a joint research work between the University of Canterbury (UC) in NZ, and the Politecnico Di Milano, in Italy. The experimental ceiling component fragility curves obtained in this existing study were employed to produce analytical fragility curves for a perimeter-fixed ceiling of a given size and weight, with grid acceleration as the intensity measure. The validity of the method was proven through comparisons between this proposed analytical approach with the recommended procedures in proprietary products design guidelines, as well as experimental fragility curves from other studies. For application to engineering design practice, and using fragility curves for a range of ceiling lengths and weights, design curves were produced for estimating the allowable grid lengths for a given demand level. In the second phase of this study, three specimens of perimeter-fixed ceilings were tested on a shake table under both sinusoidal and random floor motion input. The experiments considered the relationship between the floor acceleration, acceleration of the ceiling grid, the axial force induced in the grid members, and the effect of boundary conditions on the transfer of these axial forces. A direct correlation was observed between the axial force (recorded via load cells) and the horizontal acceleration measured on the ceiling grid. Moreover, the amplification of floor acceleration, as transferred through ceiling components, was examined and found (in several tests) to be greater than the recommended factor for the design of ceilings provided in the NZ earthquake loadings standard NZS1170.5. However, this amplification was found to be influenced by the pounding interactions between the ceiling grid members and the tiles, and this amplification diminished considerably when the high frequency content was filtered out from the output time histories. The experiments ended with damage in the ceiling grid connection at an axial force similar to the capacity of these joints previously measured through static tests in phase one. The observation of common forms of damage in ceilings in earthquakes triggered the monotonic experiments carried out in the third phase of this research with the objective of investigating a simple and easily applicable mitigation strategy for existing or new suspended ceilings. The tests focused on the possibility of using proprietary cross-shaped clip elements ordinarily used to provide seismic gap as a strengthening solution for the weak components of a ceiling. The results showed that the solution was effective under both tension and compression loads through increasing load bearing capacity and ductility in grid connections. The feasibility of a novel type of suspended ceiling called fully-floating ceiling system was investigated through shaking table tests in the next phase of this study with the main goal of isolating the ceiling from the surrounding structure; thereby arresting the transfer of associated seismic forces from the structure to the ceiling. The fully-floating ceiling specimen was freely hung from the floor above lacking any lateral bracing and connections with the perimeter. Throughout different tests, a satisfactory agreement between the fully-floating ceiling response and simple pendulum theory was demonstrated. The addition of isolation material in perimeter gaps was found effective in inducing extra damping and protecting the ceiling from pounding impact; resulting in much reduced ceiling displacements and accelerations. The only form of damage observed throughout the random floor motion tests and the sinusoidal tests was a panel dislodgement observed in a test due to successive poundings between the ceiling specimen and the surrounding beams at resonant frequencies. Partition walls as the first effective NSE in direct interaction with ceilings were the topic of the final experimental phase. Low-damage drywall partitions proposed in a previous study in the UC were tested with two common forms of suspended ceiling: braced and perimeter-fixed. The experiments investigated the in-plane and out-of-plane performance of the low-damage drywall partitions, as well as displacement compatibility between these walls and the suspended ceilings. In the braced ceiling experiment, where no connection was made between ceiling grids and surrounding walls no damage in the grid system or partitions was observed. However, at high drift values panel dislodgement was observed on corners of the ceiling where the free ends of grids were not restrained against spreading. This could be prevented by framing the grid ends using a perimeter angle that is riveted only to the grid members while keeping sufficient clearance from the perimeter walls. In the next set of tests with the perimeter-fixed ceiling, no damage was observed in the ceiling system or the drywalls. Based on the results of the experiments it was concluded that the tested ceiling had enough flexibility to accommodate the relative displacement between two perpendicular walls up to the inter-storey drifts achieved. The experiments on perimeter-fixed ceilings were followed by numerical simulations of the performance of these ceilings in a finite element model developed in the structural analysis software, SAP2000. This model was relatively simple and easy to develop and was able to replicate the experimental results to a reasonable degree. Filtering was applied to the experimental output to exclude the effect of high frequency noise and tile-grid impact. The developed model generally simulated the acceleration responses well but underestimated the peak ceiling grid accelerations. This was possibly because the peak values in time histories were affected by impact occurring at very short periods. The model overestimated the axial forces in ceiling grids which was assumed to be caused by the initial assumptions made about the tributary area or constant acceleration associated with each grid line in the direction of excitation. Otherwise, the overall success of the numerical modelling in replicating the experimental results implies that numerical modelling using conventional structural analysis software could be used in engineering practice to analyse alternative ceiling geometries proposed for application to varying structural systems. This however, needs to be confirmed through similar analyses on other ceiling examples from existing instrumented buildings during real earthquakes. As the concluding part of this research the final phase addressed the issues raised following the review of existing ceiling standards and guidelines. The applicability of the research findings to current practice and their implications were discussed. Finally, an example was provided for the design of a suspended ceiling utilising the new knowledge acquired in this research.

Research papers, University of Canterbury Library

The focus of the study presented herein is an assessment of the relative efficacy of recent Cone Penetration Test (CPT) and small strain shear wave velocity (Vs) based variants of the simplified procedure. Towards this end Receiver Operating Characteristic (ROC) analyses were performed on the CPT- and Vs-based procedures using the field case history databases from which the respective procedures were developed. The ROC analyses show that Factors of Safety (FS) against liquefaction computed using the most recent Vs-based simplified procedure is better able to separate the “liquefaction” from the “no liquefaction” case histories in the Vs liquefaction database than the CPT-based procedure is able to separate the “liquefaction” from the “no liquefaction” case histories in the CPT liquefaction database. However, this finding somewhat contradicts the assessed predictive capabilities of the CPT- and Vs-based procedures as quantified using select, high quality liquefaction case histories from the 20102011 Canterbury, New Zealand, Earthquake Sequence (CES), wherein the CPT-based procedure was found to yield more accurate predictions. The dichotomy of these findings may result from the fact that different liquefaction field case history databases were used in the respective ROC analyses for Vs and CPT, while the same case histories were used to evaluate both the CPT- and Vs-based procedures.

Research papers, University of Canterbury Library

A 3D high-resolution model of the geologic structure and associated seismic velocities in the Canterbury, New Zealand region is developed utilising data from depthconverted seismic reflection lines, petroleum and water well logs, cone penetration tests, and implicitly guided by existing contour maps and geologic cross sections in data sparse subregions. The model, developed using geostatistical Kriging, explicitly represents the significant and regionally recognisable geologic surfaces that mark the boundaries between geologic units with distinct lithology and age. The model is examined in the form of both geologic surface elevation contour maps as well as vertical cross sections of shear wave velocity, with the most prominent features being the Banks Peninsula Miocene-Pliocene volcanic edifice, and the Pegasus and Rakaia late Mesozoic-Neogene sedimentary basins. The adequacy of the modelled geologic surfaces is assessed through a residual analysis of point constraints used in the Kriging and qualitative comparisons with previous geologic models of subsets of the region. Seismic velocities for the lithological units between the geologic surfaces have also been derived, thus providing the necessary information for a Canterbury velocity model (CantVM) for use in physics-based seismic wave propagation. The developed model also has application for the determination of depths to specified shear wave velocities for use in empirical ground motion modelling, which is explicitly discussed via an example.

Research papers, University of Canterbury Library

This article presents a quantitative case study on the site amplification effect observed at Heathcote Valley, New Zealand, during the 2010-2011 Canterbury earthquake sequence for 10 events that produced notable ground acceleration amplitudes up to 1.4g and 2.2g in the horizontal and vertical directions, respectively. We performed finite element analyses of the dynamic response of the valley, accounting for the realistic basin geometry and the soil non-linear response. The site-specific simulations performed significantly better than both empirical ground motion models and physics based regional-scale ground motion simulations (which empirically accounts for the site effects), reducing the spectral acceleration prediction bias by a factor of two in short vibration periods. However, our validation exercise demonstrated that it was necessary to quantify the level of uncertainty in the estimated bedrock motion using multiple recorded events, to understand how much the simplistic model can over- or under-estimate the ground motion intensities. Inferences from the analyses suggest that the Rayleigh waves generated near the basin edge contributed significantly to the observed high frequency (f>3Hz) amplification, in addition to the amplification caused by the strong soil-rock impedance contrast at the site fundamental frequency. Models with and without considering soil non-linear response illustrate, as expected, that the linear elastic assumption severely overestimates ground motions in high frequencies for strong earthquakes, especially when the contribution of basin edge-generated Rayleigh waves becomes significant. Our analyses also demonstrate that the effect of pressure-dependent soil velocities on the high frequency ground motions is as significant as the amplification caused by the basin edge-generated Rayleigh waves.

Research papers, University of Canterbury Library

The 2010–2011 Canterbury earthquakes and their aftermath have been described by the Human Rights Commission as one of New Zealand's greatest contemporary human rights challenges. This article documents the shortcomings in the realisation of the right to housing in post-quake Canterbury for homeowners, tenants and the homeless. The article then considers what these shortcomings tell us about New Zealand's overall human rights framework, suggesting that the ongoing and seemingly intractable nature of these issues and the apparent inability to resolve them indicate an underlying fragility implicit in New Zealand's framework for dealing with the consequences of a large-scale natural disaster. The article concludes that there is a need for a comprehensive human rights-based approach to disaster preparedness, response and recovery in New Zealand.

Research papers, University of Canterbury Library

Voluntary turnover has been the subject of scholarly inquiry for more than 100 years and much is understood about the drivers of turnover, and the decision-making processes involved. To date most models of voluntary turnover have assumed a rational and sequential decision process, initiated primarily by dissatisfaction with the job and the perceived availability of alternatives. Operating within a strong predictive research agenda, countless studies have sought to validate, extend and refine these traditional models through the addition of distal antecedents, mediators, moderators, and proximal antecedents of turnover. The net result of this research is a large body of empirical support for a somewhat modest relationship between job dissatisfaction, perceived alternatives, turnover intentions, job search behaviour and actual turnover. Far less scholarly attention has been directed at understanding shock-induced turnover that is not necessarily derived from dissatisfaction. Moreover, almost no consideration has been given to understanding how a significant and commonly experienced extra-organisational shock, such as natural disaster, might impact turnover decision making. Additionally, the dynamic and cumulative impacts of multiple shocks on turnover decision making have to date not been examined by turnover researchers. In addressing these gaps this thesis presents a leaver-centric theory of employee turnover decision making that is grounded in the post-disaster context. Data for the study were collected from in-depth interviews with 31 leavers in four large organisations in Christchurch, New Zealand; an area that experienced a major natural disaster in the form of the Canterbury earthquake sequence. This context provided a unique setting in which to study turnover as the primary shock was followed by a series of smaller shocks, resulting in a period of sustained disruption to the pre-shock status quo. Grounded theory methods are used to develop a typology of leaving which describes four distinct patterns of turnover decision making that follow a significant extra-organisational shock. The proposed typology not only addresses the heterogeneous and complex nature of turnover decision making, but also provides a more nuanced explanation of the turnover process explicating how the choice of decision path followed is influenced by four contextual factors which emerged from the data: (1) pre-shock motivational state; (2) decision difficulty; (3) experienced shock magnitude; and (4) the availability of resources. The research findings address several shortcomings in the extant literature on employee turnover, and offer practical recommendations for managers seeking to retain employees in a post-disaster setting.

Research papers, University of Canterbury Library

The Canterbury region of New Zealand experienced a sequence of strong earthquakes during 2010-2011. Responses included government acquisition of many thousands of residential properties in the city of Christchurch in areas with severe earthquake effects. A large and contiguous tract of this ‘red zoned’ land lies in close proximity to the Ōtākaro / Avon River and is known as the Avon-Ōtākaro Red Zone (AORZ). The focus of this study was to provide an overview of the floodplain characteristics of the AORZ and review of international experience in ecological restoration of similar river margin and floodplain ecosystems to extract restoration principles and associated learnings. Compared to pre-earthquake ground levels, the dominant trend in the AORZ is subsidence, together with lateral movement especially in the vicinity of waterway. An important consequence of land subsidence in the lower Ōtākaro / Avon River is greater exposure to flooding and the effects of sea level rise. Scenario modelling for sea level rise indicates that much of the AORZ is exposed to inundation within a 100 year planning horizon based on a 1 m sea level rise. As with decisions on built infrastructure, investments in nature-based ‘green infrastructure’ also require a sound business case including attention to risks posed by climate change. Future-proofing of the expected benefits of ecological restoration must therefore be secured by design. Understanding and managing the hydrology and floodplain dynamics are vital to the future of the AORZ. However, these characteristics are shared by other floodplain and river restoration projects worldwide. Identifying successful approaches provides a useful a source of useful information for floodplain planning in the AORZ. This report presents results from a comparative case study of three international examples to identify relevant principles for large-scale floodplain management at coastal lowland sites.

Research papers, University of Canterbury Library

Following the Canterbury earthquake sequence of 2010-11, a large and contiguous tract of vacated ‘red zoned’ land lies alongside the lower Ōtākaro / Avon River and is known as the Avon-Ōtākaro Red Zone (AORZ). This is the second report in the Ecological Regeneration Options (ERO) project that addresses future land uses in the AORZ. The purpose of this report is to present results from an assessment of restoration opportunities conducted in April 2017. The objectives of the assessment were to identify potential benefits of ecological restoration activities across both land and water systems in the AORZ and characterise the key options for their implementation. The focus of this report is not to provide specific advice on the methods for achieving specific restoration endpoints per se. This will vary at different sites and scales with a large number of combinations possible. Rather, the emphasis is on providing an overview of the many restoration and regeneration options in their totality across the AORZ. An additional objective is to support their adequate assessment in the identification of optimum land uses and adaptive management practices for the AORZ. Participatory processes may play a useful role in assessment and stakeholder engagement by providing opportunities for social learning and the co-creation of new knowledge. We used a facilitated local knowledge based approach that generated a large quantity of reliable and site specific data in a short period of time. By inviting participation from a wide knowledge-holder network inclusivity is improved in comparison to small-group expert panel approaches. Similar approaches could be applied to other information gathering and assessment needs in the regeneration planning process. Findings from this study represent the most comprehensive set of concepts available to date to address the potential benefits of ecological regeneration in the AORZ. This is a core topic for planning to avoid missed opportunities and opportunity costs. The results identify a wide range of activities that may be applied to generate benefits for Christchurch and beyond, all involving aspects of a potential new ecology in the AORZ. These may be combined at a range of scales to create scenarios, quantify benefits, and explore the potential for synergies between different land use options. A particular challenge is acquiring the information needed within relatively short time frames. Early attention to gathering baseline data, addressing technical knowledge gaps, and developing conceptual frameworks to account for the many spatio-temporal aspects are all key activities that will assist in delivering the best outcomes. Methodologies by which these many facets can be pulled together in quantitative and comparative assessments are the focus of the final report in the ERO series.

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence (CES) of 2010-2011 caused widespread liquefaction in many parts of Christchurch. Observations from the CES highlight some sites were liquefaction was predicted by the simplified method but did not manifest. There are a number of reasons why the simplified method may over-predict liquefaction, one of these is the dynamic interaction between soil layers within a stratified deposit. Soil layer interaction occurs through two key mechanisms; modification of the ground motion due to seismic waves passing through deep liquefied layers, and the effect of pore water seepage from an area of high excess pore water pressure to the surrounding soil. In this way, soil layer interaction can significantly alter the liquefaction behaviour and surface manifestation of soils subject to seismic loading. This research aimed to develop an understanding of how soil layer interaction, in particular ground motion modification, affects the development of excess pore water pressures and liquefaction manifestation in a soil deposit subject to seismic loading. A 1-D soil column time history Effective Stress Analysis (ESA) was conducted to give an in depth assessment of the development of pore pressures in a number of soil deposits. For this analysis, ground motions, soil profiles and model parameters were required for the ESA. Deconvolution of ground motions recorded at the surface during the CES was used to develop some acceleration time histories to input at the base of the soil-column model. An analysis of 55 sites around Christchurch, where detailed site investigations have been carried out, was then conducted to identify some simplified soil profiles and soil characteristics. From this analysis, four soil profiles representative of different levels of liquefaction manifestation were developed. These were; two thick uniform and vertically continuous sandy deposits that were representative of sites were liquefaction manifested in both the Mw 7.1 September 2010 and the Mw 6.3 February 2011 earthquakes, and two vertically discontinuous profiles with interlayered liquefiable and non-liquefiable layers representative of sites that did not manifest liquefaction in either the September 2010 or the February 2011 events. Model parameters were then developed for these four representative soil profiles through calibration of the constitutive model in element test simulations. Simulations were run for each of the four profiles subject to three levels of loading intensity. The results were analysed for the effect of soil layer interaction. These were then compared to a simplified triggering analysis for the same four profiles to determine where the simplified method was accurate in predicting soil liquefaction (for the continuous sandy deposits) and were it was less accurate (the vertically discontinuous deposits where soil layer interaction was a factor).

Research papers, University of Canterbury Library

This thesis seeks to examine how the integration of play, small toys specifically, and the use of solution-focused brief therapy techniques can affect the outcomes for primary school aged children undergoing counselling. The setting is a counselling agency in Christchurch, New Zealand. A qualitative research approach is used and the data analysed using a narrative inquiry approach. The context of this study is the counselling service of an agency where young children, adolescents and their families are helped and supported through a variety of life issues. The counselling the participants are offered uses a combination of a solution-focused and play therapy where the purpose is to encourage clients to find exceptions to their presenting problems and identify their preferred future. The aim of this study is to help the children navigate their problem through a better understanding of and the gaining of personal skills and strengths. Participants were invited to be part of this study through the agency waiting list. The four included presented with a variety of reasons for coming to counselling yet these proved similar to that which the agency has been routinely presented with in the aftermath of the Canterbury earthquakes from 2011 to present day. Each participant had the consent of their parents or caregivers to engage in this project. The participants themselves separately agreed to engage in a solution- focused counselling process where the counsellor also integrated the use of small toys as part of the course. Counselling sessions were audiotaped, aspects photographed and analysed with a specific focus on client engagement. Four key themes emerged as the participants explored their personal narrative. Firstly, the “I’m OK” theme depicted in their first scaling activity, secondly a recognition that things could indeed be better and they needed help. Thirdly, a realisation of their own strengths and skills and finally that the future was an optimistic place to look forward to. These themes are described and explained through descriptions of the participant’s stories as well as self-reflection by the researcher. Transcriptions of sessions are included as are excerpts from the research journal and photographs of the use of the small toys by the children.

Research papers, University of Canterbury Library

The magnitude Mw7.8 ‘Kaikōura’ earthquake occurred shortly after midnight on 14 November 2016. This paper presents an overview of the geotechnical impacts on the South Island of New Zealand recorded during the postevent reconnaissance. Despite the large moment magnitude of this earthquake, relatively little liquefaction was observed across the South Island, with the only severe manifestation occurring in the young, loose alluvial deposits in the floodplains of the Wairau and Opaoa Rivers near Blenheim. The spatial extent and volume of liquefaction ejecta across South Island is significantly less than that observed in Christchurch during the 2010-2011 Canterbury Earthquake Sequence, and the impact of its occurrence to the built environment was largely negligible on account of the severe manifestations occurring away from the areas of major development. Large localised lateral displacements occurred in Kaikōura around Lyell Creek. The soft fine-grained material in the upper portions of the soil profile and the free face at the creek channel were responsible for the accumulation of displacement during the ground shaking. These movements had severely impacted the houses which were built close (within the zone of large displacement) to Lyell Creek. The wastewater treatment facility located just north of Kaikōura also suffered tears in the liners of the oxidation ponds and distortions in the aeration system due to ground movements. Ground failures on the Amuri and Emu Plains (within the Waiau Valley) were small considering the large peak accelerations (in excess of 1g) experienced in the area. Minor to moderate lateral spreading and ejecta was observed at some bridge crossings in the area. However, most of the structural damage sustained by the bridges was a result of the inertial loading, and the damage resulting from geotechnical issues were secondary.

Research papers, University of Canterbury Library

At 00:02 on 14th November 2016, a Mw 7.8 earthquake occurred in and offshore of the northeast of the South Island of New Zealand. Fault rupture, ground shaking, liquefaction, and co-seismic landslides caused severe damage to distributed infrastructure, and particularly transportation networks; large segments of the country’s main highway, State Highway 1 (SH1), and the Main North Line (MNL) railway line, were damaged between Picton and Christchurch. The damage caused direct local impacts, including isolation of communities, and wider regional impacts, including disruption of supply chains. Adaptive measures have ensured immediate continued regional transport of goods and people. Air and sea transport increased quickly, both for emergency response and to ensure routine transport of goods. Road diversions have also allowed critical connections to remain operable. This effective response to regional transport challenges allowed Civil Defence Emergency Management to quickly prioritise access to isolated settlements, all of which had road access 23 days after the earthquake. However, 100 days after the earthquake, critical segments of SH1 and the MNL remain closed and their ongoing repairs are a serious national strategic, as well as local, concern. This paper presents the impacts on South Island transport infrastructure, and subsequent management through the emergency response and early recovery phases, during the first 100 days following the initial earthquake, and highlights lessons for transportation system resilience.

Research papers, University of Canterbury Library

Geologic phenomena produced by earthquake shaking, including rockfalls and liquefaction features, provide important information on the intensity and spatiotemporal distribution of earthquake ground motions. The study of rockfall and liquefaction features produced in contemporary well- instrumented earthquakes increases our knowledge of how natural and anthropogenic environments respond to earthquakes and improves our ability to deduce seismologic information from analogous pre-contemporary (paleo-) geologic features. The study of contemporary and paleo- rockfall and liquefaction features enables improved forecasting of environmental responses to future earthquakes. In this thesis I utilize a combination of field and imagery-based mapping, trenching, stratigraphy, and numerical dating techniques to understand the nature and timing of rockfalls (and hillslope sedimentation) and liquefaction in the eastern South Island of New Zealand, and to examine the influence that anthropogenic activity has had on the geologic expressions of earthquake phenomena. At Rapaki (Banks Peninsula, NZ), field and imagery-based mapping, statistical analysis and numerical modeling was conducted on rockfall boulders triggered by the fatal 2011 Christchurch earthquakes (n=285) and compared with newly identified prehistoric (Holocene and Pleistocene) boulders (n=1049) deposited on the same hillslope. A significant population of modern boulders (n=26) travelled farther downslope (>150 m) than their most-travelled prehistoric counterparts, causing extensive damage to residential dwellings at the foot of the hillslope. Replication of prehistoric boulder distributions using 3-dimensional rigid body numerical models requires the application of a drag-coefficient, attributed to moderate to dense slope vegetation, to account for their spatial distribution. Radiocarbon dating provides evidence for 17th to early 20th century deforestation at the study site during Polynesian and European colonization and after emplacement of prehistoric rockfalls. Anthropocene deforestation enabled modern rockfalls to exceed the limits of their prehistoric predecessors, highlighting a shift in the geologic expression of rockfalls due to anthropogenic activity. Optical and radiocarbon dating of loessic hillslope sediments in New Zealand’s South Island is used to constrain the timing of prehistoric rockfalls and associated seismic events, and quantify spatial and temporal patterns of hillslope sedimentation including responses to seismic and anthropogenic forcing. Luminescence ages from loessic sediments constrain timing of boulder emplacement to between ~3.0 and ~12.5 ka, well before the arrival of Polynesians (ca AD 1280) and Europeans (ca AD 1800) in New Zealand, and suggest loess accumulation was continuing at the study site until 12-13 ka. Large (>5 m3) prehistoric rockfall boulders preserve an important record of Holocene hillslope sedimentation by creating local traps for sediment aggradation and upbuilding soil formation. Sediment accumulation rates increased considerably (>~10 factor increase) following human arrival and associated anthropogenic burning of hillslope vegetation. New numerical ages are presented to place the evolution of loess-mantled hillslopes in New Zealand’s South Island into a longer temporal framework and highlight the roles of earthquakes and humans on hillslope surface process. Extensive field mapping and characterization for 1733 individual prehistoric rockfall boulders was conducted at Rapaki and another Banks Peninsula site, Purau, to understand their origin, frequency, and spatial and volumetric distributions. Boulder characteristics and distributions were compared to 421 boulders deposited at the same sites during the 2010-2011 Canterbury earthquake sequence. Prehistoric boulders at Rapaki and Purau are comprised of two dominant lithofacies types: volcanic breccia and massive (coherent) lava basalt. Volcanic breccia boulders are found in greatest abundance (64-73% of total mapped rockfall) and volume (~90-96% of total rockfall) at both locations and exclusively comprise the largest boulders with the longest runout distances that pose the greatest hazard to life and property. This study highlights the primary influence that volcanic lithofacies architecture has on rockfall hazard. The influence of anthropogenic modifications on the surface and subsurface geologic expression of contemporary liquefaction created during the 2010-2011 Canterbury earthquake sequence (CES) in eastern Christchurch is examined. Trench observations indicate that anthropogenic fill layer boundaries and the composition/texture of discretely placed fill layers play an important role in absorbing fluidized sand/silt and controlling the subsurface architecture of preserved liquefaction features. Surface liquefaction morphologies (i.e. sand blows and linear sand blow arrays) display alignment with existing utility lines and utility excavations (and perforated pipes) provided conduits for liquefaction ejecta during the CES. No evidence of pre-CES liquefaction was identified within the anthropogenic fill layers or underlying native sediment. Radiocarbon dating of charcoal within the youngest native sediment suggests liquefaction has not occurred at the study site for at least the past 750-800 years. The importance of systematically examining the impact of buried infrastructure on channelizing and influencing surface and subsurface liquefaction morphologies is demonstrated. This thesis highlights the importance of using a multi-technique approach for understanding prehistoric and contemporary earthquake phenomena and emphasizes the critical role that humans play in shaping the geologic record and Earth’s surface processes.

Research papers, University of Canterbury Library

Principal contractors can achieve better financial performance in civil construction projects by increasing the proportion of works delivered by subcontractors. However, anecdotally the use of subcontractors is thought to be make principal contractors less competitive due to compounding profit margins. This study found that projects with a higher proportion of subcontracted work exhibit better financial results than projects with less work delivered by subcontractors. This study uses the Christchurch Infrastructure Alliance (known as the Stronger Christchurch Infrastructure Rebuild Team, SCIRT) as a case study to observe why principal contracting firms engage subcontractors and the effect subcontracting has on the overall performance of a construction project. Five top tier civil contracting firms (known as ‘delivery teams’) participated in the alliance. Each team was responsible for the delivery of individual projects. A sample of 334 individual SCIRT projects were analysed, and key delivery team staff were surveyed, to investigate the effect subcontractor engagement has on performance. Between the five delivery teams there were clear differences in how much work was delivered via subcontracts. The extent of this subcontractor engagement had a significant effect on the relative performance of the principal contractor. A positive correlation between subcontractor engagement and overall financial performance is observed, and a negative correlation is observed between subcontractor engagement and non-financial performance. Although the causes of these relationships appear complex, the primary reason appears to be that subcontracting fosters increased productivity by cascading financial performance incentives closer to the physical construction task. To maximise competitiveness and financial performance, principal contractors must embrace the use of subcontractors and develop efficient systems of managing subcontracted work.

Research papers, University of Canterbury Library

While some scholarship on refugee youth has focussed on leaving a place that is typically considered ‘home,’ there has been little attention to what ‘home’ means to them and how this is negotiated in the country of (re)settlement. This is particularly the case for girls and women. New Zealand research on refugee settlement has largely focussed on the economic integration of refugees. Although this research is essential, it runs the risk of overlooking the socio-cultural aspects of the resettlement experiences and renders partial our understanding of how particular generations and ethnic groups develop a sense of belonging to their adopted homeland. In order to address these research gaps, this thesis explores the experiences of 12 Afghan women, aged 19-29 years, of refugee background who relocated to Christchurch, New Zealand, during their childhood and early teenage years. This study employed semi-structured, one-to-one, in-depth interviews and photo-elicitation to encourage talk about participants’ experiences of leaving Afghanistan, often living in countries of protracted displacement (Iran and/or Pakistan) and making- and being-at-home in New Zealand. In this thesis, I explore the ways in which they frame Afghanistan, and the ways in which their experiences in Iran and Pakistan disrupt the dichotomisation of belonging in terms of ‘here’ (ancestral land) and ‘there’ (country of residence). Furthermore, I use affect theorising to analyse the participants’ expressions of resettlement and home in New Zealand. Feeling at home is as much about negotiating cultural and gendered identities in Western secular societies as it is about belonging to a particular community. Through their experiences of ‘living in two worlds’, the participants are able to strategically challenge cultural expectations without undermining their reputations as Muslims and as Afghan women. The participants discussed their emotional responses to double-displacement: one as a result of war and the other as a result of 2011 Canterbury earthquakes. Therefore, I suggest that for young Afghan women, Afghanistan was among several markers of home in a long embodied journey of (re)settlement.

Research papers, University of Canterbury Library

Worldwide turbidity is a huge concern for the health of aquatic ecosystems. Human activities on the land such as construction, deforestation, agriculture, and mining all have impacts on the amount of particulate solids that enter the world’s waterways. These particulate solids can pose a number of risks to aquatic life, but primary among them is the turbidity that they create in the water column. The way suspended solids interact with light creates cloudiness in the water which interferes with the vision, and visually mediated behaviours of aquatic organisms, particularly fish. The Avon-Heathcote estuary of Christchurch, New Zealand, is one such body of water that is subject to tremendous variation in turbidity, no doubt exacerbated by the destruction of Christchurch in the 2010 and 2011 earthquakes, as well as the subsequent ongoing rebuild. The yellow eyed mullet, Aldrichetta Forsteri, is one species that is common with the estuary, and uses it as a habitat for breeding. Though very common throughout New Zealand, and even a part of the catch of commercial fisheries, the yellow eyed mullet is a largely unstudied organism, with virtually no published scientific enquiry based on the species. The present work assesses how several behaviours of the yellow eyed mullet are effected by acute turbidity at 10, 50, 90, 130 and 170 NTU, finding that: 1) The optomotor response of mullet to 2.5 mm stripes drops to insignificant levels between 10 and 50 NTU, 2) The swimming activity of the yellow eyed mullet is highest at 10 NTU and drops to a significantly lower level at higher turbidities, 3) The grouping behaviour of small groups of yellow eyed mullet are unchanged by increasing turbidity levels, 4) that yellow eyed mullet do not exhibit significantly different behavioural response to a simulated predator at any of the tested turbidities, and 5) that yellow eyed mullet to do significantly alter their oxygen consumption during exposure to the turbidities in an increasing series. The results presented in these studies indicate that turbidites above 50 NTU pose a significant risk to the lifestyle of the yellow eyed mullet, potentially impacting their ability to perceive their surroundings, feed, school, and avoid predation. Future work has a lot of ground to cover to more precisely determine the relationship between yellow eyed mullet behaviour and physiology, and the turbidity of their environment. In particular, future work should focus more closely on the turbidities between 10 and 50 NTU, as well as looking to field work to see what the predominant predators of the mullet are, and specifically whether turbidity increases or decreases the risk of mullet being subject to avian predation. There is also considerable scope for studies on the effects of chronic turbidity upon mullet, which will add understand to the predicament of escalating turbidity and its effects upon this common and yet mysterious native fish.

Research papers, University of Canterbury Library

This dissertation addresses several fundamental and applied aspects of ground motion selection for seismic response analyses. In particular, the following topics are addressed: the theory and application of ground motion selection for scenario earthquake ruptures; the consideration of causal parameter bounds in ground motion selection; ground motion selection in the near-fault region where directivity effect is significant; and methodologies for epistemic uncertainty consideration and propagation in the context of ground motion selection and seismic performance assessment. The paragraphs below outline each contribution in more detail. A scenario-based ground motion selection method is presented which considers the joint distribution of multiple intensity measure (IM) types based on the generalised conditional intensity measure (GCIM) methodology (Bradley, 2010b, 2012c). The ground motion selection algorithm is based on generating realisations of the considered IM distributions for a specific rupture scenario and then finding the prospective ground motions which best fit the realisations using an optimal amplitude scaling factor. In addition, using different rupture scenarios and site conditions, two important aspects of the GCIM methodology are scrutinised: (i) different weight vectors for the various IMs considered; and (ii) quantifying the importance of replicate selections for ensembles with different numbers of desired ground motions. As an application of the developed scenario-based ground motion selection method, ground motion ensembles are selected to represent several major earthquake scenarios in New Zealand that pose a significant seismic hazard, namely, Alpine, Hope and Porters Pass ruptures for Christchurch city; and Wellington, Ohariu, and Wairarapa ruptures for Wellington city. A rigorous basis is developed, and sensitivity analyses performed, for the consideration of bounds on causal parameters (e.g., magnitude, source-to-site distance, and site condition) for ground motion selection. The effect of causal parameter bound selection on both the number of available prospective ground motions from an initial empirical as-recorded database, and the statistical properties of IMs of selected ground motions are examined. It is also demonstrated that using causal parameter bounds is not a reliable approach to implicitly account for ground motion duration and cumulative effects when selection is based on only spectral acceleration (SA) ordinates. Specific causal parameter bounding criteria are recommended for general use as a ‘default’ bounding criterion with possible adjustments from the analyst based on problem-specific preferences. An approach is presented to consider the forward directivity effects in seismic hazard analysis, which does not separate the hazard calculations for pulse-like and non-pulse-like ground motions. Also, the ability of ground motion selection methods to appropriately select records containing forward directivity pulse motions in the near-fault region is examined. Particular attention is given to ground motion selection which is explicitly based on ground motion IMs, including SA, duration, and cumulative measures; rather than a focus on implicit parameters (i.e., distance, and pulse or non-pulse classifications) that are conventionally used to heuristically distinguish between the near-fault and far-field records. No ad hoc criteria, in terms of the number of directivity ground motions and their pulse periods, are enforced for selecting pulse-like records. Example applications are presented with different rupture characteristics, source-to-site geometry, and site conditions. It is advocated that the selection of ground motions in the near-fault region based on IM properties alone is preferred to that in which the proportion of pulse-like motions and their pulse periods are specified a priori as strict criteria for ground motion selection. Three methods are presented to propagate the effect of seismic hazard and ground motion selection epistemic uncertainties to seismic performance metrics. These methods differ in their level of rigor considered to propagate the epistemic uncertainty in the conditional distribution of IMs utilised in ground motion selection, selected ground motion ensembles, and the number of nonlinear response history analyses performed to obtain the distribution of engineering demand parameters. These methods are compared for an example site where it is observed that, for seismic demand levels below the collapse limit, epistemic uncertainty in ground motion selection is a smaller uncertainty contributor relative to the uncertainty in the seismic hazard itself. In contrast, uncertainty in ground motion selection process increases the uncertainty in the seismic demand hazard for near-collapse demand levels.

Research papers, University of Canterbury Library

Between 2010 and 2011, Canterbury experienced a series of four large earthquake events with associated aftershocks which caused widespread damage to residential and commercial infrastructure. Fine grained and uncompacted alluvial soils, typical to the Canterbury outwash plains, were exposed to high peak ground acceleration (PGA) during these events. This rapid increase in PGA induced cyclic strain softening and liquefaction in the saturated, near surface alluvial soils. Extensive research into understanding the response of soils in Canterbury to dynamic loading has since occurred. The Earthquake Commission (EQC), the Ministry of Business and Employment (MBIE), and the Christchurch City Council (CCC) have quantified the potential hazards associated with future seismic events. Theses bodies have tested numerous ground improvement design methods, and subsequently are at the forefront of the Canterbury recovery and rebuild process. Deep Soil Mixing (DSM) has been proven as a viable ground improvement foundation method used to enhance in situ soils by increasing stiffness and positively altering in situ soil characteristics. However, current industry practice for confirming the effectiveness of the DSM method involves specific laboratory and absolute soil test methods associated with the mixed column element itself. Currently, the response of the soil around the columns to DSM installation is poorly understood. This research aims to understand and quantify the effects of DSM columns on near surface alluvial soils between the DSM columns though the implementation of standardised empirical soil test methods. These soil strength properties and ground improvement changes have been investigated using shear wave velocity (Vs), soil behaviour and density response methods. The results of the three different empirical tests indicated a consistent improvement within the ground around the DSM columns in sandier soils. By contrast, cohesive silty soils portrayed less of a consistent response to DSM, although still recorded increases. Generally, within the tests completed 50 mm from the column edge, the soil response indicated a deterioration to DSM. This is likely to be a result of the destruction of the soil fabric as the stress and strain of DSM is applied to the un‐mixed in situ soils. The results suggest that during the installation of DSM columns, a positive ground effect occurs in a similar way to other methods of ground improvement. However, further research, including additional testing following this empirical method, laboratory testing and finite 2D and 3D modelling, would be useful to quantify, in detail, how in situ soils respond and how practitioners should consider these test results in their designs. This thesis begins to evaluate how alluvial soils tend to respond to DSM. Conducting more testing on the research site, on other sites in Christchurch, and around the world, would provide a more complete data set to confirm the results of this research and enable further evaluation. Completing this additional research could help geotechnical DSM practitioners to use standardised empirical test methods to measure and confirm ground improvement rather than using existing test methods in future DSM projects. Further, demonstrating the effectiveness of empirical test methods in a DSM context is likely to enable more cost effective and efficient testing of DSM columns in future geotechnical projects.

Research papers, University of Canterbury Library

This is an ethnographic case study, tracking the course of arguments about the future of a city’s central iconic building, damaged following a major earthquake sequence. The thesis plots this as a social drama and examines the central discourses of the controversy. The focus of the drama is the Anglican neo-Gothic Christ Church Cathedral, which stands in the central square of Christchurch, New Zealand. A series of major earthquakes in 2010/2011 devastated much of the inner city, destroying many heritage-listed buildings. The Cathedral was severely damaged and was declared by Government officials in 2011 to be a dangerous building, which needed to be demolished. The owners are the Church Property Trustees, chaired by Bishop Victoria Matthews, a Canadian appointed in 2008. In March 2012 Matthews announced that the Cathedral, because of safety and economic factors, would be deconstructed. Important artefacts were to be salvaged and a new Cathedral built, incorporating the old and new. This decision provoked a major controversy, led by those who claimed that the building could and should be restored. Discourses of history and heritage, memory, place and identity, ownership, economics and power are all identified, along with the various actors, because of their significance. However, the thesis is primarily concerned with the differing meanings given to the Cathedral. The major argument centres on the symbolic interaction between material objects and human subjects and the various ways these are interpreted. At the end of the research period, December 2015, the Christ Church Cathedral stands as a deteriorating wreck, inhabited by pigeons and rats and shielded by protective, colourfully decorated wooden fences. The decision about its future remains unresolved at the time of writing.

Research papers, University of Canterbury Library

This paper presents preliminary results of an experimental campaign on three beam-column joint subassemblies extracted from a 22-storey reinforced concrete frame building constructed in late 1980s at the Christchurch’s Central Business District (CBD) area, damaged and demolished after the 2010-2011 Canterbury earthquakes sequence (CES). The building was designed following capacity design principles. Column sway (i.e., soft storey) mechanisms were avoided, and the beams were provided with plastic hinge relocation details at both beam-ends, aiming at developing plastic hinges away from the column faces. The specimens were tested under quasi-static cyclic displacement controlled lateral loading. One of the specimens, showing no visible residual cracks was cyclically tested in its as-is condition. The other two specimens which showed residual cracks varying between hairline and 1.0mm in width, were subjected to cyclic loading to simulate cracking patterns consistent with what can be considered moderate damage. The cracked specimens were then repaired with an epoxy injection technique and subsequently retested until reaching failure. The epoxy injection techniques demonstrated to be quite efficient in partly, although not fully, restoring the energy dissipation capacities of the damaged specimens at all beam rotation levels. The stiffness was partly restored within the elastic range and almost fully restored after the onset of nonlinear behaviour.

Research papers, University of Canterbury Library

Background The 2010/2011 Canterbury earthquakes and aftershocks in New Zealand caused unprecedented destruction to the physical, social, economic, and community fabric of Christchurch city. The recovery phase in Christchurch is on going, six years following the initial earthquake. Research exploring how disabled populations experience community inclusion in the longer-term recovery following natural disasters is scant. Yet such information is vital to ensure that recovering communities are inclusive for all members of the affected population. This thesis specifically examined how people who use wheelchairs experienced community inclusion four years following the 2010/2011 Canterbury earthquakes. Aims The primary research aim was to understand how one section of the disability community – people who use wheelchairs – experienced community inclusion over the four years following the 2010/2011 Canterbury earthquakes and aftershocks. A secondary aim was to test a novel sampling approach, Respondent Driven Sampling, which had the potential to enable unbiased population-based estimates. This was motivated by the lack of an available sampling frame for the target population, which would inhibit recruitment of a representative sample. Methodology and methods An exploratory sequential mixed methods design was used, beginning with a qualitative phase (Phase One), which informed a second quantitative phase (Phase Two). The qualitative phase had two stages. First, a small sample of people who use wheelchairs participated in an individual, semi-structured interview. In the second stage, these participants were then invited to a group interview to clarify and prioritise themes identified in the individual interviews. The quantitative phase was a cross-sectional survey developed from the findings from Phase One. Initially, Respondent Driven Sampling was employed to conduct a national, electronic cross-sectional survey that aimed to recruit a sample that may provide unbiased population-based estimates. Following the unsuccessful application of Respondent Driven Sampling, a region-specific convenience sampling approach was used. The datasets from the qualitative and quantitative phases were integrated to address the primary aim of the research. Results In Phase One 13 participants completed the individual interviews, and five of them contributed to the group interview. Thematic analysis of individual and group interview data suggested that participants felt the 2010/11 earthquakes magnified many pre-existing barriers to community inclusion, and also created an exciting opportunity for change. This finding was encapsulated in five themes: 1) earthquakes magnified barriers, 2) community inclusion requires energy, 3) social connections are important, 4) an opportunity lost, and 5) an opportunity found. The findings from Phase One informed the development of a survey instrument to investigate how these findings generalised to a larger sample of individuals who use wheelchairs. In Phase Two, the Respondent Driven Sampling approach failed to recruit enough participants to satisfy the statistical requirements needed to reach equilibrium, thereby enabling the calculation of unbiased population estimates. The subsequent convenience sampling approach recruited 49 participants who, combined with the 15 participants from the Respondent Driven Sampling approach that remained eligible for the region-specific sample, resulted in the total of 64 individuals who used wheelchairs and were residents of Christchurch. Participants reported their level of community inclusion at three time periods: the six months prior to the first earthquake in September 2010 (time one), the six months following the first earthquake in September 2010 (time two), and the six months prior to survey completion (between October 2015 and March 2016, (time three)). Survey data provided some precision regarding the timing in which the magnified barriers developed. Difficulty with community inclusion rose significantly between time one and time two, and while reducing slightly, was still present during time three, and had not returned to the time one baseline. The integrated findings from Phase One and Phase Two suggested that magnified barriers to community inclusion had been sustained four years post-earthquake, and community access had not returned to pre-earthquake levels, let alone improved beyond pre-earthquake levels. Conclusion Findings from this mixed methods study suggest that four years following the initial earthquake, participants were still experiencing multiple magnified barriers, which contributed to physical and social exclusion, as well as fatigue, as participants relied on individual agency to negotiate such barriers. Participants also highlighted the exciting opportunity to create an accessible city. However because they were still experiencing barriers four years following the initial event, and were concerned that this opportunity might be lost if the recovery proceeds without commitment and awareness from the numerous stakeholders involved in guiding the recovery. To truly realise the opportunity to create an accessible city following a disaster, the transition from the response phase to a sustainable longer-term recovery must adopt a new model of community engagement where decision-makers partner with people living with disability to co-produce a vision and strategy for creating an inclusive community. Furthermore, despite the unsuccessful use of Respondent Driven Sampling in this study, future research exploring the application of RDS with wheelchair users is recommended before discounting this sampling approach in this population.

Research papers, University of Canterbury Library

Capacity design and hierarchy of strength philosophies at the base of modern seismic codes allow inelastic response in case of severe earthquakes and thus, in most traditional systems, damage develops at well-defined locations of reinforced concrete (RC) structures, known as plastic hinges. The 2010 and 2011 Christchurch earthquakes have demonstrated that this philosophy worked as expected. Plastic hinges formed in beams, in coupling beams and at the base of columns and walls. Structures were damaged permanently, but did not collapse. The 2010 and 2011 Christchurch earthquakes also highlighted a critical issue: the reparability of damaged buildings. No methodologies or techniques were available to estimate the level of subsequent earthquakes that RC buildings could still sustain before collapse. No repair techniques capable of restoring the initial condition of buildings were known. Finally, the cost-effectiveness of an eventual repair intervention, when compared with a new building, was unknown. These aspects, added to nuances of New Zealand building owners’ insurance coverage, encouraged the demolition of many buildings. Moreover, there was a perceived strong demand from government and industry to develop techniques for assessing damage to steel reinforcement bars embedded in cracked structural concrete elements. The most common questions were: “Have the steel bars been damaged in correspondence to the concrete cracks?”, “How much plastic deformation have the steel bars undergone?”, and “What is the residual strain capacity of the damaged bars?” Minimally invasive techniques capable of quantifying the level and extent of plastic deformation and residual strain capacity are not yet available. Although some studies had been recently conducted, a validated method is yet to be widely accepted. In this thesis, a least-invasive method for the damage-assessment of steel reinforcement is developed. Based on the information obtained from hardness testing and a single tensile test, it is possible to estimate the mechanical properties of earthquake-damaged rebars. The reduction in the low-cycle fatigue life due to strain ageing is also quantified. The proposed damage assessment methodology is based on empirical relationships between hardness and strain and residual strain capacity. If damage is suspected from in situ measurements, visual inspection or computer analysis, a bar may be removed and more accurate hardness measurements can be obtained using the lab-based Vickers hardness methodology. The Vickers hardness profile of damaged bars is then compared with calibration curves (Vickers hardness versus strain and residual strain capacity) previously developed for similar steel reinforcement bars extracted from undamaged locations. Experimental tests demonstrated that the time- and temperature-dependent strain-ageing phenomenon causes changes in the mechanical properties of plastically deformed steels. In particular, yield strength and hardness increases, whereas ductility decreases. The changes in mechanical properties are quantified and their implications on the hardness method are highlighted. Low-cycle fatigue (LCF) failures of steel reinforcing bars have been observed in laboratory testing and post-earthquake damage inspections. Often, failure might not occur during a first seismic event. However, damage is accumulated and the remaining fatigue life is reduced. Failure might therefore occur in a subsequent seismic event. Although numerous studies exist on the LCF behaviour of steel rebars, no studies had been conducted on the strain-ageing effects on the remaining fatigue life. In this thesis, the reduction in fatigue life due to this phenomenon is determined through a number of experimental tests.

Research papers, University of Canterbury Library

Over the last six years, Canterbury residents have lived through two major earthquakes and thousands of aftershocks, with such events negatively impacting psychological health. Research shows rates of post-traumatic stress symptoms in children have doubled post-quake, and a classroom containing children who are experiencing chronically high physiological arousal has been shown to be a stressful environment for teachers. Such stress therefore negatively impacts teachers’ ability to sleep well, meaning many Christchurch teachers may suffer from insomnia, a debilitating condition leading to psychological distress and often comorbid with other mental health conditions. The present research sought to investigate the use of a broadspectrum micronutrient formula called EMPowerplus (EMP+) for chronic insomnia in teachers. This study examined the effect of EMP+ over an 8-10 week period using a multiple-baseline design with placebo. Seventeen teachers were randomized to one of three baseline sequences where they completed a one week baseline period, before receiving five, nine, or 14 days, of placebo as well as 8-10 weeks of the micronutrient formula. After completion of the trial, a three-month follow up was conducted. All participants completed the trial, and results showed a statistically reliable and clinically significant decrease in insomnia severity (Cohen’s dav = - 1.37), on at least one or more aspects of the sleep diary, and on emotional exhaustion (Cohen’s dav = -1.08). EMP+ also statistically significantly reduced insomnia severity compared to placebo (Cohen’s dav = -0.66). Statistically significant reduction was not seen in stress, anxiety and depression scores as compared to placebo, and these levels were not generally clinically raised to begin with. Sixteen out of 17 participants were compliant, and side effects were generally mild and transitory. The current study provides evidence for the beneficial effect of micronutrient supplementation on chronic insomnia in Christchurch teachers working in a stressful environment. Future research incorporating measurement of nutritional intake and proinflammatory biomarkers, as well as conducting comparisons to other conventional treatments, is recommended.

Research papers, University of Canterbury Library

This study uses 44 high quality liquefaction case histories taken from 22 locations affected by the 2010-2011 Canterbury earthquake sequence to evaluate four commonly used CPT-VS correlations (i.e., Robertson, 2009; Hegazy and Mayne, 2006; Andrus et al., 2007; McGann et al., 2015b). Co-located CPT soundings and VS profiles, developed from surface wave testing, were obtained at 22 locations and case histories were developed for the Mw 7.1, 4 September 2010 Darfield and Mw 6.2, 22 February 2011 Christchurch earthquakes. The CPT soundings are used to generate VS profiles using each of four CPT-VS correlations. These correlated VS profiles are used to estimate the factor of safety against liquefaction using the Kayen et al. (2013) VS-based simplified liquefaction evaluation procedure. An error index is used to quantify the predictive capabilities of these correlations in relation to the observations of liquefaction (or the lack thereof). Additionally, the error indices from the CPT-correlated VS profiles are compared to those obtained using: (1) the Kayen et al. (2013) procedure with surface wave-derived VS profiles, and (2) the Idriss and Boulanger (2008) CPT-based liquefaction evaluation procedure. Based on the error indices, the evaluation procedures based on direct measurements of either CPT or VS provided more accurate liquefaction triggering estimates than those obtained from any of the CPT-VS correlations. However, the performance of the CPT-VS correlations varied, with the Robertson (2009) and Hegazy and Mayne (2006) correlations performing relatively poorly for the Christchurch soils and the Andrus et al. (2007) and McGann et al. (2015b) correlations performing better. The McGann et al. (2015b) correlation had the lowest error indices of the CPT-VS correlations tested, however, none of the CPT-VS correlations provided accurate enough VS predictions to be used for the evaluation of liquefaction triggering using the VS-based liquefaction evaluation procedures.

Research papers, University of Canterbury Library

This thesis explores the lived experiences of a group of young Bhutanese former refugees between the ages of 18 to 24 years who were resettled in Christchurch between 2008 and 2010 – prior to the first major earthquake. The main goal of the thesis was to gain an understanding of their ways of coping and a second goal was to explore whether their participation in up to five mindfulness infused counselling sessions had influenced their ways of coping. A qualitative research methodology was used to guide the thesis. Participants were interviewed about the major events in their life and how they coped with them. They were then invited to participate in five sessions of mindfulness infused counselling. Approximately five weeks after their final session had ended they were invited to one final interview to explore the influence of the sessions on their ways of coping. Interviews were recorded and transcribed and research notes were taken of the mindfulness infused counselling sessions. Max van Manen’s method of phenomenology was adopted to interpret the narratives of the youth. Three main themes emerged from the data analysis and these are described as essences of lived coping experiences. The first captures their strong sense of community back in the refugee camp. The second presents the sense of resilience that exists among the Bhutanese former refugees. The third essence indicated the inner strengths of the participants which they said helped them deal with the challenging circumstances that life cast in their direction. This meant that their first experience of an earthquake was not considered the biggest event in their lives. After attending the mindfulness infused counselling sessions’ participants reported positive benefits from giving non-judgemental attention to their thoughts and feelings and they found themselves dealing with their issues proactively. For some participants their ‘accepting’ attitude facilitated better control over their emotions while others reported being able to form deeper connections with nature and other people as a result of being mindful. Other participants reported being able to make peace with the events in their past and even found that they were able to forgive those who tormented their community. However, in the absence of any major event in any of the participants’ lives in the time period following their final counselling session, the research was not able to definitely conclude that using mindful-based counselling facilitates better coping in the face extremely stressful events. There is currently very little research that focuses on the experiences of former refugee youth within New Zealand and how they utilize their capacities to deal with adversities. When this thesis commenced, the Bhutanese were the newest refugee community to be accepted for resettlement in New Zealand. This research partly addresses the limited voice of this community.