Search

found 56 results

Videos, UC QuakeStudies

The city centre and Tuahiwi Marae, the home of Ngāi Tūāhuriri, are now linked by names. The Anglican cathedral and Tuahiwi’s church, both called St Stephens, sit on land called Whitireia. Whitireia was the house of Paekia, the ancestor who landed on the North Island on the back of a whale at Tūranga, which is now the name of Christchurch’s city library.

Videos, UC QuakeStudies

Puari is a longstanding fishing area for Ngāi Tūāhuriri. It was claimed by chief Pita Te Hori for the hapū in 1868 but denied by the Crown, because the land had been allocated to settlers. This site is now owned by Ngāi Tahu and a building named after Te Hori stands here.

Videos, UC QuakeStudies

This is where Tuahiwi people fished, eeled and gathered other kaimoana until the waterways were blocked and the land confiscated for public works in 1956. Getting land back in Christchurch was a key part of the Treaty claim lodged in 1986.

Videos, UC QuakeStudies

The story of the city’s urban marae, Ngā Hau e Whā, built from 1981 onwards, begins in the migration of Māori from their tūrangawaewae to cities. The marae project is linked to a desire among city elders to move Māori out of the city centre to the east.

Videos, UC QuakeStudies

The name Omeka for the Justice Precinct comes from the Biblical omega. Dating back to the prophecy of Ratana early last century, it is testimony to Ngāi Tahu’s faith that their claims for justice would be settled.

Articles, UC QuakeStudies

Canterbury Earthquakes Symposium - Social Recovery 101 – Waimakariri District Council's social recovery framework and lessons learnt from the Greater Christchurch earthquakes This panel discussion was presented by Sandra James, Director (Connecting People) The Canterbury Earthquakes Symposium, jointly hosted by the Department of the Prime Minister and Cabinet and the Christchurch City Council, was held on 29-30 November 2018 at the University of Canterbury in Christchurch. The purpose of the event was to share lessons from the Canterbury earthquakes so that New Zealand as a whole can be better prepared in future for any similar natural disasters. Speakers and presenters included Greater Christchurch Regeneration Minister, Hon Dr Megan Woods, Christchurch Mayor, Lianne Dalziel, Ngāi Tahu chief executive, Arihia Bennett, head of the public inquiry into EQC, Dame Sylvia Cartwright, urban planner specialising in disaster recovery and castrophe risk management, Dr Laurie Johnson; Christchurch NZ chief executive and former Press editor, Joanna Norris; academic researcher and designer, Barnaby Bennett; and filmmaker, Gerard Smyth. About 300 local and national participants from the public, private, voluntary sectors and academia attended the Symposium. They represented those involved in the Canterbury recovery effort, and also leaders of organisations that may be impacted by future disasters or involved in recovery efforts. The focus of the Symposium was on ensuring that we learn from the Canterbury experience and that we can apply those learnings.

Articles, UC QuakeStudies

Canterbury Earthquakes Symposium - Ōtautahi creative spaces: Strengthening the recovery context through a collective arts-based approach This panel discussion was presented by Dr Catherine Savage, Director (Ihi Research) and Kim Morton, Director (Ihi Research) The Canterbury Earthquakes Symposium, jointly hosted by the Department of the Prime Minister and Cabinet and the Christchurch City Council, was held on 29-30 November 2018 at the University of Canterbury in Christchurch. The purpose of the event was to share lessons from the Canterbury earthquakes so that New Zealand as a whole can be better prepared in future for any similar natural disasters. Speakers and presenters included Greater Christchurch Regeneration Minister, Hon Dr Megan Woods, Christchurch Mayor, Lianne Dalziel, Ngāi Tahu chief executive, Arihia Bennett, head of the public inquiry into EQC, Dame Sylvia Cartwright, urban planner specialising in disaster recovery and castrophe risk management, Dr Laurie Johnson; Christchurch NZ chief executive and former Press editor, Joanna Norris; academic researcher and designer, Barnaby Bennett; and filmmaker, Gerard Smyth. About 300 local and national participants from the public, private, voluntary sectors and academia attended the Symposium. They represented those involved in the Canterbury recovery effort, and also leaders of organisations that may be impacted by future disasters or involved in recovery efforts. The focus of the Symposium was on ensuring that we learn from the Canterbury experience and that we can apply those learnings.

Articles, UC QuakeStudies

A PDF copy of a page on the EQ Recovery Learning site which linked to a YouTube video. In 2015, Christchurch hosted the biggest international cricket tournament ever to be played in New Zealand - the ICC Cricket World Cup. Take a look behind the scenes and through the eyes of some of Canterbury's most passionate cricketers as cricket makes its epic return to the Hagley Oval.

Research papers, The University of Auckland Library

A review of the literature showed the lack of a truly effective damage avoidance solution for timber or hybrid timber moment resisting frames (MRFs). Full system damage avoidance selfcentring behaviour is difficult to achieve with existing systems due to damage to the floor slab caused by beam-elongation. A novel gravity rocking, self-centring beam-column joint with inherent and supplemental friction energy dissipation is proposed for low-medium rise buildings in all seismic zones where earthquake actions are greater than wind. Steel columns and timber beams are used in the hybrid MRF such that both the beam and column are continuous thus avoiding beam-elongation altogether. Corbels on the columns support the beams and generate resistance and self-centring through rocking under the influence of gravity. Supplemental friction sliders at the top of the beams resist sliding of the floor whilst dissipating energy as the floor lifts on the corbels and returns. 1:20 scale tests of 3-storey one-by-two bay building based on an earlier iteration of the proposed concept served as proof-of-concept and highlighted areas for improvement. A 1:5 scale 3-storey one-by-one bay building was subsequently designed. Sub-assembly tests of the beam-top asymmetric friction sliders demonstrated repeatable hysteresis. Quasi-static tests of the full building demonstrated a ‘flat bottomed’ flag-shaped hysteresis. Shake table tests to a suite of seven earthquakes scaled for Wellington with site soil type D to the serviceability limit state (SLS), ultimate limit state (ULS) and maximum credible event (MCE) intensity corresponding to an average return period of 25, 500 and 2500 years respectively were conducted. Additional earthquake records from the 22 February 2011 Christchurch earthquakes we included. A peak drift of 0.6%, 2.5% and 3.8% was reached for the worst SLS, ULS and MCE earthquake respectively whereas a peak drift of 4.5% was reached for the worst Christchurch record for tests in the plane of the MRF. Bi-directional tests were also conducted with the building oriented at 45 degrees on the shake table and the excitation factored by 1.41 to maintain the component in the direction of the MRF. Shear walls with friction slider hold-downs which reached similar drifts to the MRF were provided in the orthogonal direction. Similar peak drifts were reached by the MRF in the bi-directional tests, when the excitation was amplified as intended. The building self-centred with a maximum residual drift of 0.06% in the dynamic tests and demonstrated no significant damage. The member actions were magnified by up to 100% due to impact upon return of the floor after uplift when the peak drift reached 4.5%. Nonetheless, all of the members and connections remained essentially linearelastic. The shake table was able to produce a limited peak velocity of 0.275 m/s and this limited the severity of several of the ULS, MCE and Christchurch earthquakes, especially the near-field records with a large velocity pulse. The full earthquakes with uncapped velocity were simulated in a numerical model developed in SAP2000. The corbel supports were modelled with the friction isolator link element and the top sliders were modelled with a multi-linear plastic link element in parallel with a friction spring damper. The friction spring damper simulated the increase in resistance with increasing joint rotation and a near zero return stiffness, as exhibited by the 1:5 scale test building. A good match was achieved between the test quasi-static global force-displacement response and the numerical model, except a less flat unloading curve in the numerical model. The peak drift from the shake table tests also matched well. Simulations were also run for the full velocity earthquakes, including vertical ground acceleration and different floor imposed load scenarios. Excessive drift was predicted by the numerical model for the full velocity near-field earthquakes at the MCE intensity and a rubber stiffener for increasing the post joint-opening stiffness was found to limit the drift to 4.8%. Vertical ground acceleration had little effect on the global response. The system generates most of its lateral resistance from the floor weight, therefore increasing the floor imposed load increased the peak drift, but less than it would if the resistance of the system did not increase due to the additional floor load. A seismic design procedure was discussed under the framework of the existing direct displacement-based design method. An expression for calculating the area-based equivalent viscous damping (EVD) was derived and a conservative correction factor of 0.8 was suggested. A high EVD of up to about 15% can be achieved with the proposed system at high displacement ductility levels if the resistance of the top friction sliders is maximised without compromising reliable return of the floor after uplift. Uniform strength joints with an equal corbel length up the height of the building and similar inter-storey drifts result in minimal relative inter-floor uplift, except between the first floor and ground. Guidelines for detailing the joint for damage avoidance including bi-directional movement were also developed.

Research papers, The University of Auckland Library

Reinforced concrete buildings that satisfied modern seismic design criteria generally behaved as expected during the recent Canterbury and Kaikoura earthquakes in New Zealand, forming plastic hinges in intended locations. While this meant that life-safety performance objectives were met, widespread demolition and heavy economic losses took place in the aftermath of the earthquakes.The Christchurch central business district was particularly hard hit, with over 60% of the multistorey reinforced concrete buildings being demolished. A lack of knowledge on the post-earthquake residual capacity of reinforced concrete buildings was a contributing factor to the mass demolition.Many aspects related to the assessment of earthquake-damaged reinforced concrete buildings require further research. This thesis focusses on improving the state of knowledge on the post earthquakeresidual capacity and reparability of moderately damaged plastic hinges, with an emphasis on plastic hinges typical of modern moment frame structures. The repair method focussed on is epoxy injection of cracks and patching of spalled concrete. A targeted test program on seventeen nominally identical large-scale ductile reinforced concrete beams, three of which were repaired by epoxy injection following initial damaging loadings, was conducted to support these objectives. Test variables included the loading protocol, the loading rate, and the level of restraint to axial elongation.The information that can be gleaned from post-earthquake damage surveys is investigated. It is shown that residual crack widths are dependent on residual deformations, and are not necessarily indicative of the maximum rotation demands or the plastic hinge residual capacity. The implications of various other types of damage typical of beam and column plastic hinges are also discussed.Experimental data are used to demonstrate that the strength and deformation capacity of plastic hinges with modern seismic detailing are often unreduced as a result of moderate earthquake induced damage, albeit with certain exceptions. Special attention is given to the effects of prior yielding of the longitudinal reinforcement, accounting for the low-cycle fatigue and strain ageing phenomena. A material-level testing program on the low-cycle fatigue behaviour of grade 300E reinforcing steel was conducted to supplement the data available in the literature.A reduction in stiffness, relative to the initial secant stiffness to yield, occurs due to moderate plastic hinging damage. This reduction in stiffness is shown to be correlated with the ductility demand,and a proposed model gives a conservative lower-bound estimate of the residual stiffness following an arbitrary earthquake-type loading. Repair by epoxy injection is shown to be effective in restoring the majority of stiffness to plastic hinges in beams. Epoxy injection is also shown to have implications for the residual strength and elongation characteristics of repaired plastic hinges.

Research Papers, Lincoln University

Numerous studies have shown that urban soils can contain elevated concentrations of heavy metals (HMs). Christchurch, New Zealand, is a relatively young city (150 years old) with a population of 390,000. Most soils in Christchurch are sub-urban, with food production in residential gardens a popular activity. Earthquakes in 2010 and 2011 have resulted in the re-zoning of 630 ha of Christchurch, with suggestions that some of this land could be used for community gardens. We aimed to determine the HM concentrations in a selection of suburban gardens in Christchurch as well as in soils identified as being at risk of HM contamination due to hazardous former land uses or nearby activities. Heavy metal concentrations in suburban Christchurch garden soils were higher than normal background soil concentrations. Some 46% of the urban garden samples had Pb concentrations higher than the residential land use national standard of 210 mg kg⁻¹, with the most contaminated soil containing 2615 mg kg⁻¹ Pb. Concentrations of As and Zn exceeded the residential land use national standards (20 mg kg⁻¹ As and 400 mg kg⁻¹ Zn) in 20% of the soils. Older neighbourhoods had significantly higher soil HM concentrations than younger neighbourhoods. Neighbourhoods developed pre-1950s had a mean Pb concentration of 282 mg kg⁻¹ in their garden soils. Soil HM concentrations should be key criteria when determining the future land use of former residential areas that have been demolished because of the earthquakes in 2010 and 2011. Redeveloping these areas as parklands or forests would result in less human HM exposure than agriculture or community gardens where food is produced and bare soil is exposed.

Research Papers, Lincoln University

On 14 November 2016, a magnitude (Mw) 7.8 earthquake struck the small coastal settlement of Kaikōura, Aotearoa-New Zealand. With an economy based on tourism, agriculture, and fishing, Kaikōura was immediately faced with significant logistical, economic, and social challenges caused by damage to critical infrastructure and lifelines, essential to its main industries. Massive landslips cut offroad and rail access, stranding hundreds of tourists, and halting the collection, processing and distribution of agricultural products. At the coast, the seabed rose two metres, limiting harbour-access to high tide, with implications for whale watching tours and commercial fisheries. Throughout the region there was significant damage to homes, businesses, and farmland, leaving owners and residents facing an uncertain future. This paper uses qualitative case study analysis to explore post-quake transformations in a rural context. The aim is to gain insight into the distinctive dynamics of disaster response mechanisms, focusing on two initiatives that have emerged in direct response to the disaster. The first examines the ways in which agriculture, food harvesting, production and distribution are being reimagined with the potential to enhance regional food security. The second examines the rescaling of power in decision-making processes following the disaster, specifically examining the ways in which rural actors are leveraging networks to meet their needs and the consequences of that repositioning on rural (and national) governance arrangements. In these and other ways, the local economy is being revitalised, and regional resilience enhanced through diversification, capitalising not on the disaster but the region's natural, social, and cultural capital. Drawing on insights and experience of local stakeholders, policy- and decision-makers, and community representatives we highlight the diverse ways in which these endeavours are an attempt to create something new, revealing also the barriers which needed to be overcome to reshape local livelihoods. Results reveal that the process of transformation as part of rural recovery must be grounded in the lived reality of local residents and their understanding of place, incorporating and building on regional social, environmental, and economic characteristics. In this, the need to respond rapidly to realise opportunities must be balanced with the community-centric approach, with greater recognition given to the contested nature of the decisions to be made. Insights from the case examples can inform preparedness and recovery planning elsewhere, and provide a rich, real-time example of the ways in which disasters can create opportunities for reimagining resilient futures.