Search

found 109111 results

Research papers, University of Canterbury Library

The Canterbury earthquakes of 2010 and 2011 caused significant damage and disruption to the city of Christchurch, New Zealand. A Royal Commission was established to report on the causes of building failure as a result of the earthquakes as well as look at the legal and best-practice requirements for buildings in New Zealand Central Business Districts. The Royal Commission made 189 recommendations on a variety of matters including managing damaged buildings after an earthquake, the adequacy of building codes and standards, and the processes of seismic assessments of existing buildings to determine their earthquake vulnerability. In response the Ministry of Business, Innovation and Employment, the agency responsible for administering building regulation in New Zealand, established a work programme to assist with the Canterbury rebuild and to implement the lessons learned throughout New Zealand. The five primary work streams in the programme are: • Facilitating the Canterbury Rebuild • Structural Performance and Design Standards • Geotechnical and structural guidance • Existing Building Resilience • Post Disaster Building Management This paper provides more detail on each of the work streams. There has been significant collaboration between the New Zealand Government and the research community, technical societies, and engineering consultants, both within New Zealand and internationally, to deliver the programme and improve the resilience of the New Zealand built environment. This has presented major challenges for an extremely busy industry in the aftermath of the Canterbury earthquakes. The paper identifies the items of work that have been completed and the work that is still in progress at the time of writing.

Research papers, University of Canterbury Library

On 22 February 2011, the second day of the first semester, a devastating magnitude 6.2 earthquake struck the city of Christchurch forcing the campus of the University of Canterbury to close for several weeks. Here, we report on the sudden curriculum and assessment overhaul that needed to be implemented using two large, first-year introductory courses as case studies. We discuss the reasoning and justifications behind these changes, as well as the logistics of this process. We draw conclusions based on student feedback and assessments and formulate lessons learnt.

Research papers, University of Canterbury Library

In February of 2011, an earthquake destroyed the only all-weather athletics track in the city of Christchurch (New Zealand). The track has yet to be replaced, and so since the loss of the track, local Christchurch athletes have only had a grass track for training and preparation for championship events. This paper considers what effect the loss of the training facility has had on the performance of athletes from Christchurch at national championship events. Not surprisingly, the paper finds that there has been a deterioration in the performance in events that are heavily dependent upon the all-weather surface. However, somewhat more surprisingly, the loss of the track appears to have caused a significant improvement in the performance of Christchurch athletes in events that, while on the standard athletics program, are not heavily track dependent.

Research papers, University of Canterbury Library

This work investigates the possibility of developing a non-contact, non-line of sight sensor to measure interstorey drift through simulation and experimental validation. • The method uses frequency-modulated continuous wave (FMCW) radar to measure displacement. This method is commonly in use in a number of modern applications, including aircraft altimeters and automotive parking sensors. • The technique avoids numerous problems found in contemporary structural health monitoring methods, namely integral drift errors and structural modification requirements. • The smallest achievable detection error in displacement was found to be as low as 0.26%, through simulated against the displacement response of a single degree of freedom structure subject to ground motion excitation. • This was verified during experimentation, when a corner-style reflector was placed on a shake table running ground motion data taken from the 4th September 2010 earthquake in Christchurch. These results confirmed the conclusions drawn from simulation.

Research papers, University of Canterbury Library

This thesis explores the discussions and perspectives of Christchurch secondary school students in regards to their particular experiences and engagement with Anzac. In this thesis I seek to rigorously and robustly examine these viewpoints through semi-structured focus group interviews and thematic analysis. I seek to situate these youth perspectives within wider debates around Anzac mythology and Anzac resurgence in New Zealand which often do not represent the youth outlook. These debates are seen, on the one hand, to present a resurgence of youth engagement with Anzac and, on the other hand, to present the idea that Anzac has become an exclusionary myth which distorts Australians’ and New Zealanders’ understanding of wider Anzac experiences and educates them in a narrow, militarised way. Youth engagement with Anzac was not something which could be solely situated under either of these debates and, instead, it was seen to be multifaceted and made up of unique ideas and elements. The youth in my study acknowledged that their Anzac education did have mythic elements which made it hard for them to engage with Anzac despite the fact that they were actually interested in learning and understanding it. These mythic elements were the idea that Anzac is taught as a ‘simple narrative’ which does not allow room for critique, that it emphasises a link between Anzac and national identity, that it disregards many alternative Anzac experiences and that it presents a particular New Zealand identity to internalise. These students responded to their mythic Anzac education in a very active way, and instead of accepting it as truth, they were able to have constructive and critical conversations about their education and push against parts of it which they found to be too narrow or skewed in particular directions based on gender, ethnicity and national identity. The students were not passive vessels which internalised their Anzac education as fact; instead, they were able to acknowledge the mythic elements of their education and its negative influence in the classroom. This thesis went further in exploring what factors were seen to enhance this active process of critique and provide students with alternative knowledge and perspectives about Anzac. These factors were ancestral ties to Anzac, research into personal Anzac stories and experiences, unassessed educational units, centenary discussions, an understanding of hardship through the earthquakes and alternative perspectives of the Anzac experience through access to the internet. These factors presented a broader understanding of Anzac perspectives and experiences and students believed that if the mythic elements of their education could be revised and these elements encouraged then their engagement with Anzac would continue long into the future.

Research papers, University of Canterbury Library

Smart cities utilise new and innovative technology to improve the function of the city for governments, citizens and businesses. This thesis offers an in-depth discussion on the concept of the smart city and sets the context of smart cities internationally. It also examines how to improve a smart city through public engagement, as well as, how to implement participatory research in a smart city project to improve the level of engagement of citizens in the planning and implementation of smart projects. This thesis shows how to incentivise behaviour change with smart city technology and projects, through increasing participation in the planning and implementation of smart technology in a city. Meaningful data is created through this process of participation for citizens in the city, by engaging the citizens in the creation of the data, therefore the information created through a smart city project is created by and for the citizens themselves. To improve engagement, a city must understand its specific context and its residents. Using Christchurch, New Zealand, and the Christchurch City Council (CCC) Smart City Project as a case study, this research engages CCC stakeholders in the Smart City Project through a series of interviews, and citizens in Christchurch through a survey and focus groups. A thorough literature review has been conducted, to illuminate the different definitions of the smart city in academia, business and governments respectively, and how these definitions vary from one another. It provides details of a carefully selected set of relevant smart cities internationally and will discuss how the Christchurch Earthquake Sequence of 2010 and 2011 has affected the CCC Smart City Project. The research process, alongside the literature review, shows diverse groups of citizens in the city should be acknowledged in this process. The concept of the smart city is redefined to incorporate the context of Christchurch, its citizens and communities. Community perceptions of smart cities in Christchurch consider the post-disaster environment and this event and subsequent rebuild process should be a focus of the smart city project. The research identified that the CCC needs to focus on participatory approaches in the planning and implementation of smart projects, and community organisations in Christchurch offer an opportunity to understand community perspectives on new smart technology and that projects internationally should consider how the context of the city will affect the participation of its residents. This project offers ideas to influence the behaviour change of citizens through a smart city project. Further research should consider other stakeholders, for instance, innovation and technology-focused business in the city, and to fully engage citizens, future research must continue the process of participatory engagement, and target diverse groups in the city, including but not limited to minority groups, older and younger generations, and those with physical and mental disabilities.

Research papers, University of Canterbury Library

The assessment of damage and remaining capacity after an earthquake is an immediate measure to determine whether a reinforced concrete (RC) building is usable and safe for occupants. The recent Christchurch earthquake (22 February 2011) caused a uniquely severe level of structural damage to modern buildings, resulting in extensive damage to the building stock. About 60% of damaged multistorey concrete buildings (3 storeys and up) were demolished after the earthquake, and the cost of reconstruction amounted to 40 billion NZD. The aftermath disclosed issues of great complexities regarding the future of the RC buildings damaged by the earthquakes. This highlighted the importance of post-event decision-making, as the outcome will allow the appropriate course of action—demolition, repair or acceptance of the existing building—to be considered. To adopt the proper strategy, accurate assessment of the residual capacity and the level of damage is required. This doctoral dissertation aims to assess the damage and remaining capacity at constituent material and member level (i.e., concrete material and beams) through a systematic approach in an attempt to address part of an existing gap in the available literature. Since the residual capacity of RC members is not unique and depends on previously applied loading history, post-event residual capacity in this study was assessed in terms of fraction of fatigue life (i.e., the number of cycles required to failure). This research comprises three main parts: (1) residual capacity and damage assessment at material level (i.e., concrete), (2) post-yield bond deterioration and damage assessment at the interface of steel and concrete, and, finally, (3) residual capacity and damage assessment at member level (i.e., RC beam). The first part of this research focused on damage assessment and the remaining capacity of concrete from a material point of view. It aimed to employ appropriate and reliable durability-based testing and image-detection techniques to quantify deterioration in the mechanical properties of concrete on the basis that stress-induced damage occurred in the microstructural system of the concrete material. To this end, in the first phase, a feasibility study was conducted in which a combination of oxygen permeability, electrical resistivity and porosity tests were assessed to determine if they were robust and reliable enough to reveal damage which occurred in the microstructural system of concrete. The results, in terms of change in permeability, electrical resistivity and porosity features of disk samples taken from the middle third of damaged concrete cylinders (200 mm × 100 mm) monotonically pre-loaded to 50%, 70%, 90% and 95% of the ultimate strength (f′c), showed the permeability test is a reliable tool to identify the degree of damage, due to its high sensitivity to the load-induced microcracking. In parallel, to determine the residual capacity, the companion damaged concrete cylinders already loaded to the same level of compressive strength were reloaded up to failure. Comparing the stress–strain relationship of damaged concrete with intact material, it was also found that the strain capacity of the reloaded pre-damaged concrete cylinders decreases while strength remained virtually unchanged. In the second phase of the first part, a fluorescent microscopy technique was used to assess the damage and develop a correlation between material degradation, by virtue of the geometrical features, and damage to the concrete. To account for the effect of confinement and cyclic loading, in the third phase, the residual capacity and damage assessment of unconfined and GFRP confined concrete cylinders subjected to low-cycle fatigue loading, was investigated. Similar to the first phase, permeability testing technique was used to provide an indirect evaluation of fatigue damage. Finally, in the fourth phase of the first part, the suitability of permeability testing technique to assess damage was evaluated for cored concrete taken from three types of RC members: columns, beams and a beam-column joint. In view of the fact that the composite action of an RC member is highly dependent on the bond between reinforcement and surrounding concrete, understanding the deterioration of the bond in the post-yield range of strain in steel was crucial to assess damage at member level. Therefore, in the second phase of this research, a state-of-the- art distributed fibre optic strain sensor system (DFOSSS) system was used to evaluate bond deterioration in a cantilever RC beam subjected to monotonic lateral loading. The technology allowed the continuous capture of strain, every 2.6 mm along the length, in both reinforcing bars and cover concrete. The strain profile provided a basis by which the slip, axial stress and bond stress distributions were then established. In the third part, the study focused on the damage assessment and residual capacity of seven half-scale RC beams subjected to a constant-amplitude cyclic loading protocol. In the first stage, the structural performances of three specimens under constant-amplitude fatigue at 1%, 2% and 4% chord rotation (drift) were examined. In parallel, the number of cycles to failure, degradation in strength, stiffness and energy dissipation were characterized. In the second stage, four RC beams were subjected to loading up to 70% and 90% of their fatigue life, at 2% and 4% drift, and then monotonically pulled up to failure. To determine the residual flexural capacity, the lateral force–displacement results of pre-damaged specimens were compared with an undamaged specimen subjected to only monotonic loading. The study showed significant losses in strength, deformability, stiffness and energy dissipation capacity. A nonlinear finite element analysis (FEA) using concrete damage plasticity (CDP) model was also conducted in ABAQUS to numerically investigate the behaviour of the tested specimen. The results of the FE simulations indicated a reasonable response compared with the behaviour of the test specimen in terms of force–displacement and cracking pattern. During the Christchurch earthquake it was observed that the loading history has a significant influence on structural responses. While in conventional pseudo-static loading protocol, internal forces can be redistributed along the plastic length: there is little chance for structures undergoing high initial loading amplitude to redistribute pertinent stresses. As a result, in the third phase of this part, the effect of high rate of loading on the behaviour of seismically designed RC beams was investigated. Two half-scale cantilever RC beams were subjected to similar constant-amplitude cyclic loading at 2% and 4% drifts, but at a rate of 500 mm/s. Due to the incapability of conventional measuring techniques, a motion-tracking system was employed for data acquisition with the high-speed tests. The effect of rate of loading on the fatigue life of specimens (i.e., the number of cycles required to failure), secant stiffness, failure mode, cracking pattern, beam elongations and bar fracture surface were analysed. Integrating the results of all parts of this research has resulted in a better understanding of residual capacity and the development of damage at both the material and member level by using a low-cycle fatigue approach.

Research papers, University of Canterbury Library

Decision making on the reinstatement of the Christchurch sewer system after the Canterbury (New Zealand) earthquake sequence in 2010–2011 relied strongly on damage data, in particular closed circuit television (CCTV). This paper documents that process and considers how data can influence decision making. Data are analyzed on 33,000 pipes and 13,000 repairs and renewals. The primary findings are that (1) there should be a threshold of damage per pipe set to make efficient use of CCTV; (2) for those who are estimating potential damage, care must be taken in direct use of repair data without an understanding of the actual damage modes; and (3) a strong correlation was found between the ratio of faults to repairs per pipe and the estimated peak ground velocity. Taken together, the results provide evidence of the extra benefit that damage data can provide over repair data for wastewater networks and may help guide others in the development of appropriate strategies for data collection and wastewater pipe decisions after disasters.

Research papers, University of Canterbury Library

Over 900 buildings in the Christchurch central business district and 10,000 residential homes were demolished following the 22nd of February 2011 Canterbury earthquake, significantly disrupting the rebuild progress. This study looks to quantify the time required for demolitions during this event which will be useful for future earthquake recovery planning. This was done using the Canterbury Earthquake Recovery Authority (CERA) demolition database, which allowed an in-depth look into the duration of each phase of the demolition process. The effect of building location, building height, and the stakeholder which initiated the demolition process (i.e. building owner or CERA) was investigated. The demolition process comprises of five phases; (i) decision making, (ii) procurement and planning, (iii) demolition, (iv) site clean-up, and (v) completion certification. It was found that the time required to decide to demolish the building made up majority of the total demolition duration. Demolition projects initiated by CERA had longer procurement and planning durations, but was quicker in other phases. Demolished buildings in the suburbs had a longer decision making duration, but had little effect on other phases of the demolition process. The decision making and procurement and planning phases of the demolition process were shorter for taller buildings, though the other phases took longer. Fragility functions for the duration of each phase in the demolition process are provided for the various categories of buildings for use in future studies.

Research papers, University of Canterbury Library

This thesis looks at the protocols museums and galleries adopt for the safeguarding of art, artefacts and cultural heritage. In particular, it analyses these procedures in relation to the 2010 and 2011 earthquakes in Christchurch, and considers how these events shaped the preventative conservation measures in place in museum and gallery institutions. Through gathering, assessing, and comparing this information about Christchurch’s institutions to disaster management best practices in national and international organisations, this thesis gauges the extent to which disaster management was changed in response to the events in Christchurch. This thesis first considers the growth in disaster management as a field, before examining what are considered best practices within this sector. Finally, it looks at specific institutions in Christchurch, including the Christchurch Art Gallery Te Puna o Waiwhetu, Canterbury Museum, and the Air Force Museum of New Zealand.

Research papers, University of Canterbury Library

This poster aims to present fragility functions for pipelines buried in liquefaction-prone soils. Existing fragility models used to quantify losses can be based on old data or use complex metrics. Addressing these issues, the proposed functions are based on the Christchurch network and soil and utilizes the Canterbury earthquake sequence (CES) data, partially represented in Figure 1. Figure 1 (a) presents the pipe failure dataset, which describes the date, location and pipe on which failures occurred. Figure 1 (b) shows the simulated ground motion intensity median of the 22nd February 2011 earthquake. To develop the model, the network and soil characteristics have also been utilized

Research papers, University of Canterbury Library

Following a natural disaster, children are prone to various reactions and maladaptive responses as a result of exposure to a highly stressful and potentially traumatic event. Children’s responses can range from an acute stress response to post-traumatic-stress disorder or may fall somewhere in between. While responses to highly stressful events vary, a common finding is that children will develop sleep problems. This was found following the Christchurch September 2010 and February 2011 earthquakes. The purpose of this study was to investigate the context and phenomenology of the sleep problems of a small number of children experiencing these and the 2016 Kaikoura earthquakes, including possible mechanisms of effect. Participants were four families, including four mothers, one father and four children. The design of this study was unique. Interview data was subjected to a content analysis, extracted themes were organised according to an ecological-transactional framework and then the factors were subject to an analysis, based on the principles of clinical reasoning, in order to identify possible mechanisms of effect. Parents reported 16 different sleep problems across children, as well as other behaviours possibly indicative of post-traumatic stress response. In total, 34 themes and 26 interactions were extracted in relation to factors identified across participants about the children’s sleep and the families’ earthquake experiences. This demonstrated how complex it is to explore the development of sleep problems in the context of disaster. Key factors identified by parents that likely played a key role in the development and perpetuation of sleep problems included earthquake related anxiety, parental mental health and conflict, the child’s emotional and behavioural problems and other negative life events following the earthquakes. The clinical implications of the analysis included being aware that such families, may not have had access to specialized support around their children’s sleep. This was much needed due to the strain such problems place on the family, especially in a post-disaster community such as Christchurch.

Research papers, University of Canterbury Library

© 2018 Springer Nature B.V. This study compares seismic losses considering initial construction costs and direct-repair costs for New Zealand steel moment-resisting frame buildings with friction connections and those with extended bolted-end-plate connections. A total of 12 buildings have been designed and analysed considering both connection types, two building heights (4-storey and 12-storey), and three locations around New Zealand (Auckland, Christchurch, and Wellington). It was found that buildings with friction connections required design to a higher design ductility, yet are generally stiffer due to larger beams being required to satisfy higher connection overstrength requirements. This resulted in the frames with friction connections experiencing lower interstorey drifts on most floors but similar peak total floor accelerations, and subsequently incurring lower drift-related seismic repair losses. Frames with friction connections tended to have lower expected net-present-costs within 50 years of the building being in service for shorter buildings and/or if located in regions of high seismicity. None of the frames with friction connections in Auckland showed any benefits due to the low seismicity of the region.

Research papers, University of Canterbury Library

Background: Earthquakes are found to have lingering post-disaster effects on children that can be present for months or years after the disaster, including hyperarousal symptoms. Young children have the most difficulties in regulating their emotions, especially when they are highly aroused. Colouring-in mandala designs have been found to reduce hyperarousal symptoms of stress in young adults. The purpose of this study was to determine if the same effects of colouring-in mandalas would be seen with children showing signs of hyperarousal. Research Question: To identify what effect colouring-in mandala designs would have on the heart rate in a young child showing signs of hyperarousal. Method: Following approved procedures for informed consent, two 6-year-old girls from a Christchurch primary school were chosen for the study. Heart rate was measured using a Fitbit in a single subject design. The baseline, colouring-in and a second baseline phase were conducted during mathematics. The participants and their teacher reported on arousal, enjoyment, and positive and problem behaviours. The study took 26 school days to complete. Results: Compared with baseline, the average heart rate data showed no decrease in heart rate (i.e., calming effect) during the mandala colouring-in task phase. Conclusions: The participants enjoyed colouring-in the mandalas, but the average heart rate data did not show that colouring-in pre-drawn designs reduced heart rate, a measure of arousal. Major study limitations included; not having suitable participants or a suitable setting for the colouring-in task, and not being able to observe both participants.

Research papers, University of Canterbury Library

Very little research exists on total house seismic performance. This testing programme provides stiffness and response data for five houses of varying ages including contributions of non-structural elements. These light timber framed houses in Christchurch, New Zealand had minor earthquake damage from the 2011 earthquakes and were lateral load tested on site to determine their strength and stiffness, and preliminary damage thresholds. Dynamic characteristics were also investigated. Various loading schemes were utilised including quasi-static loading above the foundation, unidirectional loading through the floor diaphragm, cyclic quasi-static loading and snapback tests. Dynamic analysis on two houses provided the seismic safety levels of post-quake houses with respect to local hazard levels. Compared with New Zealand Building Standards all the tested houses had an excess of strength, damage is a significant consideration in earthquake resilience and was observed in all of the houses. A full size house laboratory test is proposed.

Research papers, University of Canterbury Library

Context of the project: On 4 September 2010, 22 February 2011, 13 June 2011 and 23 December 2011 Christchurch suffered major earthquakes and aftershocks (well over 10,000) that have left the central city in ruins and many of the eastern suburbs barely habitable even now. The earthquakes on 22 February caused catastrophic loss of life with 185 people killed. The toll this has taken on the residents of Christchurch has been considerable, not least of all for the significant psychological impact and disruption it has had on the children. As the process of rebuilding the city commenced, it became clear that the arts would play a key role in maintaining our quality of life during difficult times. For me, this started with the children and the most expressive of all the art forms – music.

Research papers, University of Canterbury Library

For 150,000 Christchurch school students, the 12.51 pm earthquake of 22 February 2011 shattered their normal lunch time activities and thrust their teachers into the role of emergency first responders. Whether helping students (children) escape immediate danger, or identifying and managing the best strategies for keeping children safe, including provision of extended caregiving when parents were unable to return to school to retrieve their children, teachers had to manage their own fears and trauma reactions in order to appear calm and prevent further distress for the children in their care. Only then did teachers return to their families. Eighteen months later, twenty teachers from across Christchurch, were interviewed. At 12.51pm, the teachers were essentially first responders. Using their usual methods for presenting a calm and professional image, the teachers’ emotion regulation (ER) strategies for managing their immediate fears were similar to those of professional first responders, with similar potential for subsequent burnout and negative emotional effects. Teachers’ higher emotional exhaustion and burnout 18 months later, were associated with school relocation. Lower burnout was associated with more emotional awareness, ER and perceived support. Consistent with international research, teachers’ use of cognitive reappraisal (re-thinking a situation) was an effective ER strategy, but this may not prevent teachers’ emotional resources from eventually becoming depleted. Teachers fulfill an important role in supporting children’s psychosocial adjustment following a natural disaster. However, as also acknowledged in international research, we need to also focus on supporting the teachers themselves.

Research papers, University of Canterbury Library

Peri-urban environments are critical to the connections between urban and rural ecosystems and their respective communities. Lowland floodplains are important examples that are attractive for urbanisation and often associated with the loss of rural lands and resources. In Christchurch, New Zealand, damage from major earthquakes led to the large-scale abandonment of urban residential properties in former floodplain areas creating a rare opportunity to re-imagine the future of these lands. This has posed a unique governance challenge involving the reassessment of land-use options and a renewed focus on disaster risk and climate change adaptation. Urban-rural tensions have emerged through decisions on relocating residential development, alternative proposals for land uses, and an unprecedented opportunity for redress of degraded traditional values for indigenous (Māori) people. Immediately following the earthquakes, existing statutory arrangements applied to many recovery needs and identified institutional responsibilities. Bespoke legislation was also created to address the scale of impacts. Characteristics of the approach have included attention to information acquisition, iterative assessment of land - use options, and a wide variety of opportunities for community participation. Challenges have included a protracted decision-making process with accompanying transaction costs, and a high requirement for coordination. The case typifies the challenges of achieving ecosystem governance where both urban and rural stakeholders have strong desires and an opportunity to exert influence. It presents a unique context for applying the latest thinking on ecosystem management, adaptation, and resilience, and offers transferable learning for the governance of peri-urban floodplains worldwide.

Research papers, University of Canterbury Library

The nonlinear dynamic soil-foundation-structure interaction (SFSI) can signifi cantly affect the seismic response of buildings, causing additional deformation modes, damage and repair costs. Because of nonlinear foundation behaviour and interactions, the seismic demand on the superstructure may considerably change, and also permanent deformations at the foundation level may occur. Although SFSI effects may be benefi cial to the superstructure performance, any advantage would be of little structural value unless the phenomenon can be reliably controlled and exploited. Detrimental SFSI effects may also occur, including acceleration and displacement response ampli cation and differential settlements, which would be unconservative to neglect. The lack of proper understanding of the phenomenon and the limited available simpli ed tools accounting for SFSI have been major obstacles to the implementation of integrated design and assessment procedures into the everyday practice. In this study concepts, ideas and practical tools (inelastic spectra) for the seismic design and assessment of integrated foundation-superstructure systems are presented, with the aim to explicitly consider the impact of nonlinearities occurring at the soil-foundation interface on the building response within an integrated approach, where the foundation soil and superstructure are considered as part of an integrated system when evaluating the seismic response, working synergically for the achievement of a target global performance. A conceptual performance-based framework for the seismic design and assessment of integrated foundation-superstructure systems is developed. The framework is based on the use of peak and residual response parameters for both the superstructure and the foundation, which are then combined to produce the system performance matrix. Each performance matrix allows for worsening of the performance when different contributions are combined. An attempt is made to test the framework by using case histories from the 2011 Christchurch earthquake, which are previously shown to have been severely affected by nonlinear SFSI. The application highlights the framework sensitivity to the adopted performance limit states, which must be realistic for a reliable evaluation of the system performance. Constant ductility and constant strength inelastic spectra are generated for nonlinear SFSI systems (SDOF nonlinear superstructure and 3DOF foundation allowing for uplift and soil yielding), representing multistorey RC buildings with shallow rigid foundations supported by cohesive soils. Different ductilities/strengths, hysteretic rules (Bi-linear, Takeda and Flag-Shape), soil stiffness and strength and bearing capacity factors are considered. Footings and raft foundations are investigated, characterized respectively by constant (3 and 8) and typically large bearing capacity factors. It is confi rmed that when SFSI is considered, the superstructure yielding force needed to satisfy a target ductility for a new building changes, and that similarly, for an existing building, the ductility demand on a building of a given strength varies. The extent of change of seismic response with respect to xed-base (FB) conditions depends on the class of soils considered, and on the bearing capacity factor (SF). For SF equal to 3, the stiffer soils enhance the nonlinear rotational foundation behaviour and are associated with reduced settlement, while the softer ones are associated with increased settlement response but not signi ficant rotational behaviour. On average terms, for the simplifi ed models considered, SFSI is found to be bene cial to the superstructure performance in terms of acceleration and superstructure displacement demand, although exceptions are recorded due to ground motion variability. Conversely, in terms of total displacement, a signi cant response increase is observed. The larger the bearing capacity factor, the more the SFSI response approaches the FB system. For raft foundation buildings, characterized by large bearing capacity factors, the impact of foundation response is mostly elastic, and the system on average approaches FB conditions. Well de fined displacement participation factors to the peak total lateral displacement are observed for the different contributions (i.e. peak foundation rotation and translation and superstructure displacement). While the superstructure and foundation rotation show compensating trends, the foundation translation contribution varies as a function of the moment-to-shear ratio, becoming negligible in the medium-to-long periods. The longer the superstructure FB period, the less the foundation response is signifi cant. The larger the excitation level and the less ductile the superstructure, the larger the foundation contribution to the total lateral displacement, and the less the superstructure contribution. In terms of hysteretic behaviour, its impact is larger when the superstructure response is more signifi cant, i.e. for the softer/weaker soils and larger ductilities. Particularly, for the Flag Shape rule, larger superstructure displacement participation factors and smaller foundation contributions are recorded. In terms of residual displacements, the total residual-to-maximum ratios are similar in amplitudes and trends to the corresponding FB system responses, with the foundation and superstructure contributions showing complementary trends. The impact of nonlinear SFSI is especially important for the Flag Shape hysteresis rule, which would not otherwise suffer of any permanent deformations. By using the generated peak and residual inelastic spectra (i.e. inelastic acceleration/ displacement modifi cation factor spectra, and/or participation factor and residual spectra), conceptual simplifi ed procedures for the seismic design and assessment of integrated foundation-superstructure systems are presented. The residual displacements at both the superstructure and foundation levels are explicitly considered. Both the force- and displacement-based approaches are explored. The procedures are de fined to be complementary to the previously proposed integrated performance-based framework. The use of participation factor spectra allows the designer to easily visualize the response of the system components, and could assist the decision making process of both the design and assessment of SFSI systems. The presented numerical results have been obtained using simpli ed models, assuming rigid foundation behaviour and neglecting P-Delta effects. The consideration of more complex systems including asymmetry in stiffness, mass, axial load and ground conditions with a exible foundation layout would highlight detrimental SFSI effects as related to induced differential settlements, while accounting for PDelta effects would further amplify the displacement response. Also, the adopted acceleration records were selected and scaled to match conventional design spectra, thus not representing any response ampli cation in the medium-to-long period range which could as well cause detrimental SFSI effects. While these limitations should be the subject of further research, this study makes a step forward to the understanding of SFSI phenomenon and its incorporation into performance-based design/assessment considerations.

Research papers, University of Canterbury Library

One of the most controversial issues highlighted by the 2010-2011 Christchurch earthquake series and more recently the 2016 Kaikoura earthquake, has been the evident difficulty and lack of knowledge and guidelines for: a) evaluation of the residual capacity damaged buildings to sustain future aftershocks; b) selection and implementation of a series of reliable repairing techniques to bring back the structure to a condition substantially the same as prior to the earthquake; and c) predicting the cost (or cost-effectiveness) of such repair intervention, when compared to fully replacement costs while accounting for potential aftershocks in the near future. As a result of such complexity and uncertainty (i.e., risk), in combination with the possibility (unique in New Zealand when compared to most of the seismic-prone countries) to rely on financial support from the insurance companies, many modern buildings, in a number exceeding typical expectations from past experiences at an international level, have ended up being demolished. This has resulted in additional time and indirect losses prior to the full reconstruction, as well as in an increase in uncertainty on the actual relocation of the investment. This research project provides the main end-users and stakeholders (practitioner engineers, owners, local and government authorities, insurers, and regulatory agencies) with comprehensive evidence-based information to assess the residual capacity of damage reinforced concrete buildings, and to evaluate the feasibility of repairing techniques, in order to support their delicate decision-making process of repair vs. demolition or replacement. Literature review on effectiveness of epoxy injection repairs, as well as experimental tests on full-scale beam-column joints shows that repaired specimens have a reduced initial stiffness compared with the undamaged specimen, with no apparent strength reduction, sometimes exhibiting higher displacement ductility capacities. Although the bond between the steel and concrete is only partially restored, it still allows the repaired specimen to dissipate at least the same amount of hysteretic energy. Experimental tests on buildings subjected to earthquake loading demonstrate that even for severe damage levels, the ability of the epoxy injection to restore the initial stiffness of the structure is significant. Literature review on damage assessment and repair guidelines suggests that there is consensus within the international community that concrete elements with cracks less than 0.2 mm wide only require cosmetic repairs; epoxy injection repairs of cracks less and 2.0 mm wide and concrete patching of spalled cover concrete (i.e., minor to moderate damage) is an appropiate repair strategy; and for severe damaged components (e.g., cracks greater than 2.0 mm wide, crushing of the concrete core, buckling of the longitudinal reinforcement) local replacement of steel and/or concrete in addition to epoxy crack injection is more appropriate. In terms of expected cracking patterns, non-linear finite element investigations on well-designed reinforced concrete beam-to-column joints, have shown that lower number of cracks but with wider openings are expected to occur for larger compressive concrete strength, f’c, and lower reinforcement content, ρs. It was also observed that the tensile concrete strength, ft, strongly affects the expected cracking pattern in the beam-column joints, the latter being more uniformly distributed for lower ft values. Strain rate effects do not seem to play an important role on the cracking pattern. However, small variations in the cracking pattern were observed for low reinforcement content as it approaches to the minimum required as per NZS 3101:2006. Simple equations are proposed in this research project to relate the maximum and residual crack widths with the steel strain at peak displacement, with or without axial load. A literature review on fracture of reinforcing steel due to low-cycle fatigue, including recent research using steel manufactured per New Zealand standards is also presented. Experimental results describing the influence of the cyclic effect on the ultimate strain capacity of the steel are also discussed, and preliminary equations to account for that effect are proposed. A literature review on the current practice to assess the seismic residual capacity of structures is also presented. The various factors affecting the residual fatigue life at a component level (i.e., plastic hinge) of well-designed reinforced concrete frames are discussed, and equations to quantify each of them are proposed, as well as a methodology to incorporate them into a full displacement-based procedure for pre-earthquake and post-earthquake seismic assessment.

Research papers, University of Canterbury Library

Land cover change information in urban areas supports decision makers in dealing with public policy planning and resource management. Remote sensing has been demonstrated as an efficient and accurate way to monitor land cover change over large extents. The Canterbury Earthquake Sequence (CES) caused massive damage in Christchurch, New Zealand and resulted in significant land cover change over a short time period. This study combined two types of remote sensing data, aerial imagery (RGB) and LiDAR, as the basis for quantifying land cover change in Christchurch between 2011 – 2015, a period corresponding to the five years immediately following the 22 February 2011 earthquake, which was part of the CES. An object based image analysis (OBIA) approach was adopted to classify the aerial imagery and LiDAR data into seven land cover types (bare land, building, grass, shadow, tree and water). The OBIA approach consisted of two steps, image segmentation and object classification. For the first step, this study used multi-level segmentation to better segment objects. For the second step, the random forest (RF) classifier was used to assign a land cover type to each object defined by the segmentation. Overall classification accuracies for 2011 and 2015 were 94.0% and 94.32%, respectively. Based on the classification result, land cover changes between 2011 and 2015 were then analysed. Significant increases were found in road and tree cover, while the land cover types that decreased were bare land, grass, roof, water. To better understand the reasons for those changes, land cover transitions were calculated. Canopy growth, seasonal differences and forest plantation establishment were the main reasons for tree cover increase. Redevelopment after the earthquake was the main reason for road area growth. By comparing the spatial distribution of these transitions, this study also identified Halswell and Wigram as the fastest developing suburbs in Christchurch. These results provided quantitative information for the effects of CES, with respect to land cover change. They allow for a better understanding for the current land cover status of Christchurch. Among those land cover changes, the significant increase in tree cover aroused particularly interest as urban forests benefit citizens via ecosystem services, including health, social, economic, and environmental benefits. Therefore, this study firstly calculated the percentages of tree cover in Christchurch’s fifteen wards in order to provide a general idea of tree cover change in the city extent. Following this, an automatic individual tree detection and crown delineation (ITCD) was undertaken to determine the feasibility of automated tree counting. The accuracies of the proposed approach ranged between 56.47% and 92.11% in thirty different sample plots, with an overall accuracy of 75.60%. Such varied accuracies were later found to be caused by the fixed tree detection window size and misclassifications from the land cover classification that affected the boundary of the CHM. Due to the large variability in accuracy, tree counting was not undertaken city-wide for both time periods. However, directions for further study for ITCD in Christchurch could be exploring ITCD approaches with variable window size or optimizing the classification approach to focus more on producing highly accurate CHMs.

Research papers, University of Canterbury Library

This thesis examines the opportunities for young citizens in Christchurch to be engaged in city planning post-disaster. This qualitative study was conducted eight years after the 2010-2011 earthquakes and employed interviews with 18 young people aged between 12-24 years old, 14 of whom were already actively engaged in volunteering or participating in a youth council. It finds that despite having sought out opportunities for youth leadership and advocacy roles post-disaster, young people report frustration that they are excluded from decision-making and public life. These feelings of exclusion were described by young people as political, physical and social. Young people felt politically excluded from decision-making in the city, with some youth reporting that they did not feel listened to by decision-makers or able to make a difference. Physical exclusion was also experienced by the young people I interviewed, who reported that they felt excluded from their city and neighbourhood. This ranged from feeling unwelcome in certain parts of the city due to perceived social stratification, to actual exclusion from newly privatised areas in a post-quake recovery city. Social exclusion was reported by young people in the study in regard to their sense of marginalisation from the wider community, due to structural and social barriers. Among these, they observed a sense of prejudice towards them and other youth due to their age, class and/or ethnicity. The barriers to their participation and inclusion, and their aspirations for Christchurch post-disaster are discussed, as well as the implications of exclusion for young people’s wellbeing and sense of belonging. Results of this study contribute to the literature that challenges the sole focus on children and young peoples’ vulnerability post-disaster, reinforcing their capacity and desire to contribute to the recovery of their city and community (Peek, 2008). This research also challenges the narrative that young people are politically apathetic (Norris, 2004; Nissen, 2017), and adds to our understandings of the way that disasters can concentrate power amongst certain groups, in this case excluding young people generally from decision-making and public life. I conclude with some recommendations for a more robust post-disaster recovery in Christchurch, in ways that are more inclusive of young people and supportive of their wellbeing.

Research papers, University of Canterbury Library

Background: We are in a period of history where natural disasters are increasing in both frequency and severity. They are having widespread impacts on communities, especially on vulnerable communities, those most affected who have the least ability to prepare or respond to a disaster. The ability to assemble and effectively manage Interagency Emergency Response Teams (IERTs) is critical to navigating the complexity and chaos found immediately following disasters. These teams play a crucial role in the multi-sectoral, multi-agency, multi-disciplinary, and inter-organisational response and are vital to ensuring the safety and well-being of vulnerable populations such as the young, aged, and socially and medically disadvantaged in disasters. Communication is key to the smooth operation of these teams. Most studies of the communication in IERTs during a disaster have been focussed at a macro-level of examining larger scale patterns and trends within organisations. Rarely found are micro-level analyses of interpersonal communication at the critical interfaces between collaborating agencies. This study set out to understand the experiences of those working at the interagency interfaces in an IERT set up by the Canterbury District Health Board to respond to the needs of the vulnerable people in the aftermath of the destructive earthquakes that hit Canterbury, New Zealand, in 2010-11. The aim of the study was to gain insights about the complexities of interpersonal communication (micro-level) involved in interagency response coordination and to generate an improved understanding into what stabilises the interagency communication interfaces between those agencies responding to a major disaster. Methods: A qualitative case study research design was employed to investigate how interagency communication interfaces were stabilised at the micro-level (“the case”) in the aftermath of the destructive earthquakes that hit Canterbury in 2010-11 (“the context”). Participant recruitment was undertaken by mapping which agencies were involved within the IERT and approaching representatives from each of these agencies. Data was collected via individual interviews using a semi-structured interview guide and was based on the “Critical Incident Technique”. Subsequently, data was transcribed verbatim and subjected to inductive analysis. This was underpinned theoretically by Weick’s “Interpretive Approach” and supported by Nvivo qualitative data analysis software. Results: 19 participants were interviewed in this study. Out of the inductive analysis emerged two primary themes, each with several sub-factors. The first major theme was destabilising/disruptive factors of interagency communication with five sub-factors, a) conflicting role mandates, b) rigid command structures, c) disruption of established communication structures, d) lack of shared language and understanding, and e) situational awareness disruption. The second major theme stabilising/steadying factors in interagency communication had four sub-factors, a) the establishment of the IERT, b) emergent novel communication strategies, c) establishment of a liaison role and d) pre-existing networks and relationships. Finally, there was a third sub-level identified during inductive analysis, where sub-factors from both primary themes were noted to be uniquely interconnected by emergent “consequences” arising out of the disaster context. Finally, findings were synthesised into a conceptual “Model of Interagency Communication at the Micro-level” based on this case study of the Canterbury earthquake disaster response. Discussion: The three key dimensions of The People, The Connections and The Improvisations served as a framework for the discussion of what stabilises interagency communication interfaces in a major disaster. The People were key to stabilising the interagency interfaces through functioning as a flexible conduit, guiding and navigating communication at the interagency interfaces and improving situational awareness. The Connections provided the collective competence, shared decision-making and prior established relationships that stabilised the micro-level communication at interagency interfaces. And finally, The Improvisations i.e., novel ideas and inventiveness that emerge out of rapidly changing post-disaster environments, also contributed to stabilisation of micro-level communication flows across interagency interfaces in the disaster response. “Command and control” hierarchical structures do provide clear processes and structures for teams working in disasters to follow. However, improvisations and novel solutions are also needed and often emerge from first responders (who are best placed to assess the evolving needs in a disaster where there is a high degree of uncertainty). Conclusion: This study highlights the value of incorporating an interface perspective into any study that seeks to understand the processes of IERTs during disaster responses. It also strengthens the requirement for disaster management frameworks to formally plan for and to allow for the adaptive responsiveness of local teams on the ground, and legitimise and recognise the improvisations of those in the role of emergent boundary spanners in a disaster response. This needs to be in addition to existing formal disaster response mechanisms. This study provides a new conceptual model that can be used to guide future case studies exploring stability at the interfaces of other IERTs and highlights the centrality of communication in the experiences of members of teams in the aftermath of a disaster. Utilising these new perspectives on stabilising communication at the interagency interfaces in disaster responses will have practical implications in the future to better serve the needs of vulnerable people who are at greatest risk of adverse outcomes in a disaster.

Research papers, University of Canterbury Library

School travel is a major aspect of a young person’s everyday activity. The relationship between the built environment that youth experience on their way to and from school, influences a number of factors including their development, health and wellbeing. This is especially important in low income areas where the built environment is often poorer, but the need for it to be high quality and accessible is greater. This study focusses on the community of Aranui, a relatively low income suburb in Christchurch, New Zealand. It pays particular attention to Haeata Community Campus, a state school of just under 800 pupils from year one through to year thirteen (ages 5-18). The campus opened in 2017 following the closure of four local schools (three primary and one secondary), as part of the New Zealand Government’s Education Renewal scheme following the Christchurch earthquakes of 2010/11. Dedicated effort toward understanding the local built environment, and subsequent travel patterns has been argued to be insufficiently considered. The key focus of this research was to understand the importance of the local environment in encouraging active school travel. The present study combines geospatial analysis, quantitative survey software Maptionnaire, and statistical models to explore the features of the local environment that influence school travel behaviour. Key findings suggest that distance to school and parental control are the most significant predictors of active transport in the study sample. Almost 75% of students live within two kilometres of the school, yet less than 40% utilise active transport. Parental control may be the key contributing factor to the disproportionate private vehicle use. However, active school travel is acknowledged as a complex process that is the product of many individual, household, and local environment factors. To see increased active transport uptake, the local environment needs to be of greater quality. Meaning that the built environment should be improved to be youth friendly, with greater walkability and safe, accessible cycling infrastructure.

Research papers, University of Canterbury Library

In recent work on commons and commoning, scholars have argued that we might delink the practice of commoning from property ownership, while paying attention to modes of governance that enable long-term commons to emerge and be sustained. Yet commoning can also occur as a temporary practice, in between and around other forms of use. In this article we reflect on the transitional commoning practices and projects enabled by the Christchurch post-earthquake organisation Life in Vacant Spaces, which emerged to connect and mediate between landowners of vacant inner city demolition sites and temporary creative or entrepreneurial users. While these commons are often framed as transitional or temporary, we argue they have ongoing reverberations changing how people and local government in Christchurch approach common use. Using the cases of the physical space of the Victoria Street site “The Commons” and the virtual space of the Life in Vacant Spaces website, we show how temporary commoning projects can create and sustain the conditions of possibility required for nurturing commoner subjectivities. Thus despite their impermanence, temporary commoning projects provide a useful counter to more dominant forms of urban development and planning premised on property ownership and “permanent” timeframes, in that just as the physical space of the city being opened to commoning possibilities, so too are the expectations and dispositions of the city’s inhabitants, planners, and developers.

Research papers, University of Canterbury Library

Cats all over the world hunt wild animals and can contribute to the extinction of threatened species. In New Zealand, around half of all households have at least one cat. When cats live close to a natural area, such as a wetland, they may have impacts on native species. A previous study on the movements and hunting behaviour of domestic (house) cats around the Travis Wetland, Christchurch, New Zealand during 2000-2001 raised concerns about the effects of cats on the local skink population, as skinks were a frequent prey item. My study is a comparison to the prior study, to determine if impacts have changed alongside changes in human populations in the area post-earthquake. The domestic cat population in the area was estimated by a household survey in March-April 2018. For a 6 month period from March-September 2018, 26 households recorded prey brought home by their 41 cats. During April-July 2018, 14 cats wore Global Positioning System (GPS) devices for 7 days each to track their movements. Skink abundance was measured with pitfall trapping over 20 days in February 2018. There were more households in the area in 2018 than there were in 2000, but the numbers of cats had decreased. In the 196 ha study area around Travis Wetland, the domestic cat population was estimated at 429 cats, down from the previous 494. Most of the cats were free roaming, but the majority had been desexed and many were mostly seen at home. A total of 42 prey items were reported from 26 households and 41 cats over 6 months. Of these, 62% were rodents, 26% were exotic birds, and 12% were native birds. There were no native skinks, other mammals, or other vertebrates such as fish and amphibians (invertebrates were not included in this study). Eight male and six female cats were tracked by GPS. Home range sizes for the 100% minimum convex polygons (MCPs) ranged from 1.34 to 9.68 ha (mean 4.09 ha, median 3.54 ha). There were 9/14 (64%) cats that entered the edge of the wetland. Males had significantly larger home range areas at night and in general compared with females. However, age and distance of the cat’s household to the wetland did not have a significant effect on home range size and there was no significant correlation between home range size and prey retrieved. In 20 days of skink trapping, 11 Oligosoma polychroma were caught. The estimated catch rate was not significantly different from an earlier study on skink abundance in Travis Wetland. The apparently low abundance of skinks may have been the result of successful wetland restoration creating less suitable skink habitat, or of other predators other than cats. In the future, increased education should be provided to the public about ways to increase wildlife in their area. This includes creating lizard friendly habitat in their gardens and increasing management for cats. Generally, only a few cats bring home prey often, and these select cats should be identified in initial surveys and included in further studies. In New Zealand, until management programmes can target all predators in urban areas, domestic cats could stay out at night and inside during the day to help decrease the abundance of rodents at night and reduce the number of birds and lizards caught during the day.

Research papers, University of Canterbury Library

Results from cyclic undrained direct simple shear tests on reconstituted specimens of two sands from Christchurch are compared against the liquefaction resistance inferred from CPT-based empirical liquefaction triggering methods. Limitations in existing empirical triggering relationships to capture important effects related to processes which originated test soils are highlighted and discussed.

Research papers, University of Canterbury Library

Background: There has been a psychopathology focus in disaster research examining adolescent mental health and wellbeing, but recently studies have begun to also examine wellbeing-related constructs. Although an increased risk of posttraumatic stress disorder has been established in disaster-exposed adolescents, comparatively little is known about how disasters impact adolescent wellbeing, nor how factors within the post-disaster environment interact to influence holistic adolescent mental health and wellbeing. Objective: The objective of this study was to describe the holistic mental health and wellbeing of adolescents living in an earthquake-struck city by considering a range of mental health and wellbeing indicators, as well as risk and protective factors hypothesised to influence mental health and wellbeing. The dual-factor model of mental health was used as a framework to guide this study. Method: A survey of Christchurch secondary school students was used to gather data about their subjective wellbeing, risk of low wellbeing, psychological distress, quality of life, exposure to Adverse Childhood Experiences, social support from friends and family, school connectedness, and expectations about future quality of life. Results: A slim majority of students reported good subjective wellbeing (52.3%) and high current quality of life (56.4%), whereas a larger majority reported low risk of psychological distress (79%). An equal proportion of students reported high and low risk of low wellbeing. There were no statistically significant differences in any of the variables measured between adolescents who did and did not live through the Christchurch earthquakes. Regression analyses identified that school connectedness, social support from friends and family, and future expectations of quality of life significantly predicted subjective wellbeing, risk of low wellbeing, risk of psychological distress, and current quality of life. The number of Adverse Childhood Experiences significantly predicted only risk of psychological distress when the effects of other variables were controlled for. Conclusion: The findings of this study indicate that there is a low mean level of wellbeing and quality of life in this sample of adolescents living in a severely earthquake- affected community. School connectedness, social support from family and friends, and expectations about future quality of life were shown to significantly predict variance in subjective wellbeing, quality of life, and psychological distress. This suggests that there are social and environmental factors that can be targeted to improve holistic mental health and wellbeing in disaster-affected adolescents who have experienced high levels of trauma. Conclusions in this study are limited by the representativeness of the sample, the cross- sectional nature of the study, and potential sampling bias.

Research papers, University of Canterbury Library

Background: There has been a psychopathology focus in disaster research examining adolescent mental health and wellbeing, but recently studies have begun to also examine wellbeing-related constructs. Although an increased risk of posttraumatic stress disorder has been established in disaster-exposed adolescents, comparatively little is known about how disasters impact adolescent wellbeing, nor how factors within the post-disaster environment interact to influence holistic adolescent mental health and wellbeing. Objective: The objective of this study was to describe the holistic mental health and wellbeing of adolescents living in an earthquake-struck city by considering a range of mental health and wellbeing indicators, as well as risk and protective factors hypothesised to influence mental health and wellbeing. The dual-factor model of mental health was used as a framework to guide this study. Method: A survey of Christchurch secondary school students was used to gather data about their subjective wellbeing, risk of low wellbeing, psychological distress, quality of life, exposure to Adverse Childhood Experiences, social support from friends and family, school connectedness, and expectations about future quality of life. Results: A slim majority of students reported good subjective wellbeing (52.3%) and high current quality of life (56.4%), whereas a larger majority reported low risk of psychological distress (79%). An equal proportion of students reported high and low risk of low wellbeing. There were no statistically significant differences in any of the variables measured between adolescents who did and did not live through the Christchurch earthquakes. Regression analyses identified that school connectedness, social support from friends and family, and future expectations of quality of life significantly predicted subjective wellbeing, risk of low wellbeing, risk of psychological distress, and current quality of life. The number of Adverse Childhood Experiences significantly predicted only risk of psychological distress when the effects of other variables were controlled for. Conclusion: The findings of this study indicate that there is a low mean level of wellbeing and quality of life in this sample of adolescents living in a severely earthquake-affected community. School connectedness, social support from family and friends, and expectations about future quality of life were shown to significantly predict variance in subjective wellbeing, quality of life, and psychological distress. This suggests that there are social and environmental factors that can be targeted to improve holistic mental health and wellbeing in disaster-affected adolescents who have experienced high levels of trauma. Conclusions in this study are limited by the representativeness of the sample, the cross-sectional nature of the study, and potential sampling bias.

Research papers, University of Canterbury Library

Background: There has been a psychopathology focus in disaster research examining adolescent mental health and wellbeing, but recently studies have begun to also examine wellbeing-related constructs. Although an increased risk of posttraumatic stress disorder has been established in disaster-exposed adolescents, comparatively little is known about how disasters impact adolescent wellbeing, nor how factors within the post-disaster environment interact to influence holistic adolescent mental health and wellbeing. Objective: The objective of this study was to describe the holistic mental health and wellbeing of adolescents living in an earthquake-struck city by considering a range of mental health and wellbeing indicators, as well as risk and protective factors hypothesised to influence mental health and wellbeing. The dual-factor model of mental health was used as a framework to guide this study. Method: A survey of Christchurch secondary school students was used to gather data about their subjective wellbeing, risk of low wellbeing, psychological distress, quality of life, exposure to Adverse Childhood Experiences, social support from friends and family, school connectedness, and expectations about future quality of life. Results: A slim majority of students reported good subjective wellbeing (52.3%) and high current quality of life (56.4%), whereas a larger majority reported low risk of psychological distress (79%). An equal proportion of students reported high and low risk of low wellbeing. There were no statistically significant differences in any of the variables measured between adolescents who did and did not live through the Christchurch earthquakes. Regression analyses identified that school connectedness, social support from friends and family, and future expectations of quality of life significantly predicted subjective wellbeing, risk of low wellbeing, risk of psychological distress, and current quality of life. The number of Adverse Childhood Experiences significantly predicted only risk of psychological distress when the effects of other variables were controlled for. Conclusion: The findings of this study indicate that there is a low mean level of wellbeing and quality of life in this sample of adolescents living in a severely earthquake- affected community. School connectedness, social support from family and friends, and expectations about future quality of life were shown to significantly predict variance in subjective wellbeing, quality of life, and psychological distress. This suggests that there are social and environmental factors that can be targeted to improve holistic mental health and wellbeing in disaster-affected adolescents who have experienced high levels of trauma. Conclusions in this study are limited by the representativeness of the sample, the cross- sectional nature of the study, and potential sampling bias.