Search

found 109114 results

Research papers, University of Canterbury Library

Landslides are significant hazards, especially in seismically-active mountainous regions, where shaking amplified by steep topography can result in widespread landsliding. These landslides present not only an acute hazard, but a chronic hazard that can last years-to-decades after the initial earthquake, causing recurring impacts. The Mw 7.8 Kaikōura earthquake caused more than 20,000 landslides throughout North Canterbury and resulted in significant damage to nationally significant infrastructure in the coastal transport corridor (CTC), isolating Kaikōura from the rest of New Zealand. In the years following, ongoing landsliding triggered by intense rainfall exacerbated the impacts and slowed the recovery process. However, while there is significant research on co-seismic landslides and their initial impacts in New Zealand, little research has explored the evolution of co-seismic landslides and how this hazard changes over time. This research maps landslides annually between 2013 and 2021 to evaluate the changes in pre-earthquake, co-seismic and post-earthquake rates of landsliding to determine how landslide hazard has changed over this time. In particular, the research explores how the number, area, and spatial distribution of landslides has changed since the earthquake, and whether post-earthquake mitigation works have in any way affected the long-term landslide hazard. Mapping of landslides was undertaken using open-source, medium resolution Landsat-8 and Sentinel-2 satellite imagery, with landslides identified visually and mapped as single polygons that capture both the source zone and deposit. Three study areas with differing levels of post-earthquake mitigation are compared: (i) the northern CTC, where the majority of mitigation was in the form of active debris removal; (ii) the southern CTC, where mitigation was primarily via passive protection measures; and (iii) Mount Fyffe, which has had no mitigation works since the earthquake. The results show that despite similar initial impacts during the earthquake, the rate of recovery in terms of landslide rates varies substantially across the three study areas. In Mount Fyffe, the number and area of landslides could take 45 and 22 years from 2021 respectively to return to pre-earthquake levels at the current rate. Comparatively, in the CTC, it could take just 5 years and 3-4 years from 2021 respectively. Notably, the fastest recovery in terms of landslide rates in the CTC was primarily located directly along the transport network, whereas what little recovery did occur in Mount Fyffe appeared to follow no particular pattern. Importantly, recovery rates in the northern CTC were notably higher than in the southern CTC, despite greater co-seismic impacts in the former. Combined, these results suggest the active, debris removal mitigation undertaken in the northern CTC may have had the effect of dramatically reducing the time for landslide rates to return to pre-earthquake levels. The role of slope angle and slope aspect were explored to evaluate if these observations could be driven by local differences in topography. The Mount Fyffe study area has higher slope angles than the CTC as a whole and landslides predominantly occurred on slightly steeper slopes than in the CTC. This may have contributed to the longer recovery times for landsliding in Mount Fyffe due to greater gravitational instability, however the observed variations are minor compared to the differences in recovery rates. In terms of slope aspect, landslides in Mount Fyffe preferentially occurred on north- and south-facing slopes whereas landslides in the CTC preferred the east- and south-facing slopes. The potential role of these differences in landslide recovery remains unclear but may be related to the propagation direction of the earthquake and the tracking direction of post-earthquake ex-tropical cyclones. Finally, landslides in the CTC are observed to be moving further away from the transport network and the number of landslides impacting the CTC decreased significantly since the earthquake. Nevertheless, the potential for further landslide reactivation remains. Therefore, despite the recovery in the CTC, it is clear that there is still risk of the transport network being impacted by further landsliding, at least for the next 3-5 yrs.

Research papers, University of Canterbury Library

People aged 65 years and older are the fastest growing age group in New Zealand. By the mid-2070s, there are predictions that this age group is likely to comprise approximately one third of the population. Older people are encouraged to stay in their own homes within their community for as long as possible with support to encourage the extension of ageing in place. Currently around 14% of those aged 75 years or older, make the move into retirement villages. This is expected to increase. Little is known by retirement villages about the wellbeing and health of those who decide to live independently in these facilities. Predicting the need for a continuum of care is challenging. This research measured the wellbeing and health of older adults. It was situated in a critical realist paradigm, overlaid with an empathetic axiology. A focused literature review considered the impact on wellbeing from the aspects of living place, age, gender, health status and the 2010/2011 Canterbury earthquakes. Longitudinal studies used the Enlightenment Scale and the interRAI Community Health Assessment (CHA) to measure the wellbeing and health of one group of residents (n=120) living independently in one retirement village in Canterbury, New Zealand. The research was extended to incorporate two cross-section studies when initial results for wellbeing were found to be higher than anticipated. These additional studies included participants living independently from other retirement villages (n=115) and those living independently within the community (n=354). A total of 589 participants, aged 65 – 97 years old, completed the Enlightenment Scale across the four studies. Across the living places, wellbeing continued to significantly improve with age. The Enlightenment Scale was a useful measure of wellbeing with older adults. Participants in the longitudinal studies largely maintained a relatively good health status, showing little change over the study period of 15 months. Predictions for the need for a move to supportive care were not able to be made using the CHA. The health status of participants did not influence their level of wellbeing. The key finding of note is that the wellbeing score of older adults increases by 1.27 points per year, using the Enlightenment Scale, irrespective of where they live.

Research papers, University of Canterbury Library

In this article we utilize grounded theory to explore women’s experiences in the unique construction industry context that followed the 2010 Canterbury (New Zealand) earthquakes. Data were obtained from 36 semi-structured interviews conducted with women working in a variety of occupations in the construction industry. We identify three inter-related categories: capitalizing on opportunity, demonstrating capability and surface tolerance, which together represent a response process that we label ‘deferential tailoring’. The deferential tailoring process explains how women intentionally shape their response to industry conditions through self-regulating behaviors that enables them to successfully seize opportunities and manage gender-related challenges in the working environment. Our findings challenge existing research which suggests that women adopt submissive coping strategies to conform to androcentric norms in the construction industry. Instead, we argue that the process of deferential tailoring can empower women to build positive workplace relationships, enhance career development, and help shift perceptions of the value of their work in the industry.

Research papers, University of Canterbury Library

In 2016, the Building (Earthquake-prone Buildings) Amendment Act 2016 was introduced to address the issue of seismic vulnerability amongst existing buildings in Aotearoa New Zealand. This Act introduced a mandatory scheme to remediate buildings deemed particularly vulnerable to seismic hazard, as recommended by the 2012 Royal Commission into the Canterbury earthquake sequence of 2010–2011. This Earthquake-prone Building (EPB) framework is unusual internationally for the mandatory obligations that it introduces. This article explores and critiques the operation of the scheme in practice through an examination of its implementation provisions and the experiences of more recent seismic events (confirmed by engineering research). This analysis leads to the conclusion that the operation of the current scheme and particularly the application of the concept of EPB vulnerability excludes large numbers of (primarily urban) buildings which pose a significant risk in the event of a significant (but expected) seismic event. As a result, the EPB scheme fails to achieve its goals and instead may create a false impression that it does so

Research papers, University of Canterbury Library

Recent surface-rupturing earthquakes in New Zealand have highlighted significant exposure and vulnerability of the road network to fault displacement. Understanding fault displacement hazard and its impact on roads is crucial for mitigating risks and enhancing resilience. There is a need for regional-scale assessments of fault displacement to identify vulnerable areas within the road network for the purposes of planning and prioritising site-specific investigations. This thesis employs updated analysis of data from three historical surface-rupturing earthquakes (Edgecumbe 1987, Darfield 2010, and Kaikoūra 2016) to develop an empirical model that addresses the gap in regional fault displacement hazard analysis. The findings contribute to understanding of • How to use seismic hazard model inputs for regional fault displacement hazard analysis • How faulting type and sediment cover affects the magnitude and spatial distribution of fault displacement • How the distribution of displacement and regional fault displacement hazard is impacted by secondary faulting • The inherent uncertainties and limitations associated with employing an empirical approach at a regional scale • Which sections of New Zealand’s roading network are most susceptible to fault displacement hazard and warrant site-specific investigations • Which regions should prioritise updating emergency management plans to account for post-event disruptions to roading. I used displacement data from the aforementioned historical ruptures to generate displacement versus distance-to-fault curves for various displacement components, fault types, and geological characteristics. Using those relationships and established relationships for along-strike displacement, displacement contours were generated surrounding active faults within the NZ Community Fault Model. Next, I calculated a new measure of 1D strain along roads as well as relative hazard, which integrated 1D strain and normalised slip rate data. Summing these values at the regional level identified areas of heightened relative hazard across New Zealand, and permits an assessment of the susceptibility of road networks using geomorphon land classes as proxies for vulnerability. The results reveal that fault-parallel displacements tend to localise near the fault plane, while vertical and fault-perpendicular displacements sustain over extended distances. Notably, no significant disparities were observed in off-fault displacement between the hanging wall and footwall sides of the fault, or among different surface geology types, potentially attributed to dataset biases. The presence of secondary faulting in the dataset contributes to increased levels of tectonic displacement farther from the fault, highlighting its significance in hazard assessments. Furthermore, fault displacement contours delineate broader zones around dip-slip faults compared to strike-slip faults, with correlations identified between fault length and displacement width. Road ‘strain’ values are higher around dip-slip faults, with notable examples observed in the Westland and Buller Districts. As expected, relative hazard analysis revealed elevated values along faults with high slip rates, notably along the Alpine Fault. A regional-scale analysis of hazard and exposure reveals heightened relative hazard in specific regions, including Wellington, Southern Hawke’s Bay, Central Bay of Plenty, Central West Coast, inland Canterbury, and the Wairau Valley of Marlborough. Notably, the Central West Coast exhibits the highest summed relative hazard value, attributed to the fast-slipping Alpine Fault. The South Island generally experiences greater relative hazard due to larger and faster-slipping faults compared to the North Island, despite having fewer roads. Central regions of New Zealand face heightened risk compared to Southern or Northern regions. Critical road links intersecting high-slipping faults, such as State Highways 6, 73, 1, and 2, necessitate prioritisation for site-specific assessments, emergency management planning and targeted mitigation strategies. Roads intersecting with the Alpine Fault are prone to large parallel displacements, requiring post-quake repair efforts. Mitigation strategies include future road avoidance of nearby faults, modification of road fill and surface material, and acknowledgement of inherent risk, leading to prioritised repair efforts of critical roads post-quake. Implementing these strategies enhances emergency response efforts by improving accessibility to isolated regions following a major surface-rupturing event, facilitating faster supply delivery and evacuation assistance. This thesis contributes to the advancement of understanding fault displacement hazard by introducing a novel regional, empirical approach. The methods and findings highlight the importance of further developing such analyses and extending them to other critical infrastructure types exposed to fault displacement hazard in New Zealand. Enhancing our comprehension of the risks associated with fault displacement hazard offers valuable insights into various mitigation strategies for roading infrastructure and informs emergency response planning, thereby enhancing both national and global infrastructure resilience against geological hazards.

Images, eqnz.chch.2010

Of what many in Christchurch know as the Millers building, but for many recent years was the home to the Christchurch City Council, till just a week or two before the first earthquake of 2010. Now, in mid-2014 it is finally being demolished after nearly 45 months empty. A bus is leaving the new (temporary) bus exchange onto Tuam Street. But n...

Images, eqnz.chch.2010

20140521_1080_1D3-24 It has started! Removal of the double-glazed windows is underway at my "red zone" house, now owned by the Government of New Zealand. Sold to CERA (the government agency) in October 2012 and has remained empty since, despite having little damage, apart from the tilt to the front from the land damage that occurred during the...

Images, eqnz.chch.2010

A sight becoming more common in post-earthquake Christchurch - lifting earthquake-affected buildings to allow their foundations to be replaced and or completely replaced.

Images, eqnz.chch.2010

Overlooking McCormacks bay out across the city with the Southern Alps as a backdrop. There is still a strong effect from the July 11, 2011 Volcanic erruption (Puyehue) in Chile. Ash made it over to New Zealand causing very strong colours at sunset. The colours have not been artificially changed and its not a mash up. The parts of the city (and...

Images, eqnz.chch.2010

Another house has gone from Seabreeze Close, Pacific Park, Bexley, leaving just the concrete base, a few floor tiles and the smashed toilet (throne). Houses are being demolished (85%) or deconstructed/shifted (15%) as a result of land damage in the major earthquakes of 4th September 2010, 22nd February 2011, 13th June 2011 and 23rd December 2...

Images, eqnz.chch.2010

Christchurch's Graffiti House... This Cranford Street house was damaged in the earthquakes and is due for demolished this week but has been given a Graffiti Makeover by local Street Artists.

Images, eqnz.chch.2010

20140927_2219_1D3-24 Planting natives at Harold Henry Park A planting of native bushes and trees in the old children's playground area in Bexley, Organised by the Facebook group Avon River Park and assisted by ex Bexley residents. This is right in the middle of the Bexley red zone with most houses removed or demolished now.

Images, eqnz.chch.2010

Today (04/09/14) marks the fourth anniversary since the first earthquake rocked the city and greater Christchurch area. That first quake was magnitude 7.1, and luckily there was only one fatality (possible a heart attack). Since then we have had over 14,000 quakes, most very small in magnitude, but well over 500 of magnitude 4 or greater. 5...

Images, eqnz.chch.2010

The sign reads: The CTV Building was headquarters of Canterbury Television (CTV) and also housed King’s Education language School, a medical clinic, Hair Consultants, Relationship Services and a nursing school. On February 22nd 2011 the building collapsed as a result of a major earthquake. Sadly, 115 people who were in the building lost their l...

Images, eqnz.chch.2010

On a walk over to Hagley Park to great some shots of the wonderful Cherry Blossom I past by the Knox Church rebuild and found that the scaffolding has come down at last. It sure was shinning in the midday light. Victoria Street September 12, 2014 Christchurch New Zealand