Search

found 44031 results

Research papers, University of Canterbury Library

Knowing how to rapidly rebuild disaster-damaged infrastructure, while deciding appropriate recovery strategies and catering for future investment is a matter of core interest to government decision makers, utility providers, and business sectors. The purpose of this research is to explore the effects of decisions and outcomes for physical reconstruction on the overall recovery process of horizontal infrastructure in New Zealand using the Canterbury and Kaikoura earthquakes as cases. A mixed approach including a systematic review, questionnaire survey and semi-structured interviews is used to capture perspectives of those involved in reconstruction process and gain insights into the effect of critical elements on infrastructure downtime. Findings from this research will contribute towards advancements of a systems dynamics model considering critical decision-making variables across phases of the reconstruction process to assess how these variables affect the rebuild process and the corresponding downtime. This project will improve the ability to explore alternative resilience improvement pathways and test the efficacy of alternative means for facilitating a faster and better reconstruction process.

Research papers, University of Canterbury Library

Geospatial liquefaction models aim to predict liquefaction using data that is free and readily-available. This data includes (i) common ground-motion intensity measures; and (ii) geospatial parameters (e.g., among many, distance to rivers, distance to coast, and Vs30 estimated from topography) which are used to infer characteristics of the subsurface without in-situ testing. Since their recent inception, such models have been used to predict geohazard impacts throughout New Zealand (e.g., in conjunction with regional ground-motion simulations). While past studies have demonstrated that geospatial liquefaction-models show great promise, the resolution and accuracy of the geospatial data underlying these models is notably poor. As an example, mapped rivers and coastlines often plot hundreds of meters from their actual locations. This stems from the fact that geospatial models aim to rapidly predict liquefaction anywhere in the world and thus utilize the lowest common denominator of available geospatial data, even though higher quality data is often available (e.g., in New Zealand). Accordingly, this study investigates whether the performance of geospatial models can be improved using higher-quality input data. This analysis is performed using (i) 15,101 liquefaction case studies compiled from the 2010-2016 Canterbury Earthquakes; and (ii) geospatial data readily available in New Zealand. In particular, we utilize alternative, higher-quality data to estimate: locations of rivers and streams; location of coastline; depth to ground water; Vs30; and PGV. Most notably, a region-specific Vs30 model improves performance (Figs. 3-4), while other data variants generally have little-to-no effect, even when the “standard” and “high-quality” values differ significantly (Fig. 2). This finding is consistent with the greater sensitivity of geospatial models to Vs30, relative to any other input (Fig. 5), and has implications for modeling in locales worldwide where high quality geospatial data is available.

Research papers, University of Canterbury Library

Background This study examines the performance of site response analysis via nonlinear total-stress 1D wave-propagation for modelling site effects in physics-based ground motion simulations of the 2010-2011 Canterbury, New Zealand earthquake sequence. This approach allows for explicit modeling of 3D ground motion phenomena at the regional scale, as well as detailed nonlinear site effects at the local scale. The approach is compared to a more commonly used empirical VS30 (30 m time-averaged shear wave velocity)-based method for computing site amplification as proposed by Graves and Pitarka (2010, 2015), and to empirical ground motion prediction via a ground motion model (GMM).

Research papers, University of Canterbury Library

Hybrid broadband simulation methods typically compute high-frequency portion of ground-motions using a simplified-physics approach (commonly known as “stochastic method”) using the same 1D velocity profile, anelastic attenuation profile and site-attenuation (κ0) value for all sites. However, these parameters relating to Earth structure are known to vary spatially. In this study we modify this conventional approach for high-frequency ground-shaking by using site-specific input parameters (referred to as “site-specific”) and analyze improvements over using same parameters for all sites (referred to as “generic”). First, we theoretically understand how different 1D velocity profiles, anelastic attenuation profiles and site-attenuation (κ0) values affects the Fourier Acceleration Spectrum (FAS). Then, we apply site-specific method to simulate 10 events from the 2010-2011 Canterbury earthquake sequence to assess performance against the generic approach in predicting recorded ground-motions. Our initial results suggest that the site-specific method yields a lower simulation standard deviation than generic case.

Research papers, University of Canterbury Library

Detailed studies on the sediment budget may reveal valuable insights into the successive build-up of the Canterbury Plains and their modification by Holocene fluvialaction connected to major braided rivers. Additionally, they bear implications beyond these fluvial aspects. Palaeoseismological studies claim to have detected signals of major Alpine Fault earthquakes in coastal environments along the eastern seaboard of the South Island (McFadgen and Goff, 2005). This requires high connectivity between the lower reaches of major braided rivers and their mountain catchments to generate immediate significant sediment pulses. It would be contradictory to the above mentioned hypothesis though. Obtaining better control on sediment budgets of braided rivers like the Waimakariri River will finally add significant value to multiple scientific and applied topics like regional resource management. An essential first step of sediment budget studies Is to systematically map the geomorphology, conventionally in the field and/or using remote-sensing applications, to localise, genetically identify, and classify landforms or entire toposequences of the area being investigated. In formerly glaciated mountain environments it is also indispensable to obtain all available chronological information supporting subsequent investigations.

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 2 from the Marine Ecology Research Group (MERG) at the University of Canterbury. Recover is designed to keep you updated on our MBIE funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This second issue profiles some of the recent work done by our team out in the field!

Research papers, University of Canterbury Library

Welcome to the first Recover newsletter from the Marine Ecology Research Group (MERG) at the University of Canterbury. Recover is designed to keep you updated on our MBIE funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Ecosystem Recovery). This first issue provides a summary of some of the big changes we’ve seen. In the next issue we’ll be profiling some of the current research as well as ways you can get involved!

Research papers, University of Canterbury Library

Despite the relatively low seismicity, a large earthquake in the Waikato region is expected to have a high impact, when the fourth-largest regional population and economy and the high density critical infrastructure systems in this region are considered. Furthermore, Waikato has a deep soft sedimentary basin, which increases the regional seismic hazard due to trapping and amplification of seismic waves and generation of localized surface waves within the basin. This phenomenon is known as the “Basin Effect”, and has been attributed to the increased damage in several historic earthquakes, including the 2010-2011 Canterbury earthquakes. In order to quantitatively model the basin response and improve the understanding of regional seismic hazard, geophysical methods will be used to develop shear wave velocity profiles across the Waikato basin. Active surface wave methods involve the deployment of linear arrays of geophones to record the surface waves generated by a sledge hammer. Passive surface wave methods involve the deployment of two-dimensional seismometer arrays to record ambient vibrations. At each site, the planned testing includes one active test and two to four passive arrays. The obtained data are processed to develop dispersion curves, which describe surface wave propagation velocity as a function of frequency (or wavelength). Dispersion curves are then inverted using the Geopsy software package to develop a suite of shear wave velocity profiles. Currently, more than ten sites in Waikato are under consideration for this project. This poster presents the preliminary results from the two sites that have been tested. The shear wave velocity profiles from all sites will be used to produce a 3D velocity model for the Waikato basin, a part of QuakeCoRE flagship programme 1.

Research papers, University of Canterbury Library

The purpose of this research is to investigate men’s experiences of the 2016 7.8 magnitude Kaikōura earthquake and Tsunami. While, research into the impacts of the earthquake has been conducted, few studies have examined how gender shaped people’s experiences of this natural hazard event. Analysing disasters through a gender lens has significantly contributed to disaster scholarship in identifying the resilience and vulnerabilities of individuals and communities pre- and post-disaster (Fordham, 2012; Bradshaw, 2013). This research employs understandings of masculinities (Connell, 2005), to examine men’s strengths and challenges in responding, recovering, and coping following the earthquake. Qualitative inquiry was carried out in Northern Canterbury and Marlborough involving 18 face-to-face interviews with men who were impacted by the Kaikōura earthquake and its aftermath. Interview material is being analysed using thematic and narrative analysis. Some of the preliminary findings have shown that men took on voluntary roles in addition to their fulltime paid work resulting in long hours, poor sleep and little time spent with family. Some men assisted wives and children to high ground then drove into the tsunami zone to check on relatives or to help evacuate people. Although analysis of the findings is currently ongoing, preliminary findings have identified that the men who participated in the study have been negatively impacted by the 2016 Kaikōura earthquake. A theme identified amongst participants was an avoidance to seek support with the challenges they were experiencing due to the earthquake. The research findings align with key characteristics of masculinity, including demonstrating risky behaviours and neglecting self or professional care. This study suggests that these behaviours affect men’s overall resilience, and thus the resilience of the wider community.

Research papers, University of Canterbury Library

In this paper we apply Full waveform tomography (FWT) based on the Adjoint-Wavefield (AW) method to iteratively invert a 3-D geophysical velocity model for the Canterbury region (Lee, 2017) from a simple initial model. The seismic wavefields was generated using numerical solution of the 3-D elastodynamic/ visco- elastodynamic equations (EMOD3D was adopted (Graves, 1996)), and through the AW method, gradients of model parameters (compression and shear wave velocity) were computed by implementing the cross-adjoint of forward and backward wavefields. The reversed-in-time displacement residual was utilized as the adjoint source. For inversion, we also account for the near source/ station effects, gradient precondition, smoothening (Gaussian filter in spatial domain) and optimal step length. Simulation-to-observation misfit measurements based on 191 sources at 78 seismic stations in the Canterbury region (Figure 1) were used into our inversion. The inversion process includes multiple frequency bands, starting from 0-0.05Hz, and advancing to higher frequency bands (0-0.1Hz and 0-0.2Hz). Each frequency band was used for up to 10 iterations or no optimal step length found. After 3 FWT inversion runs, the simulated seismograms computed using our final model show a good matching with the observed seismograms at frequencies from 0 - 0.2 Hz and the normalized least-squared misfit error has been significantly reduced. Over all, the synthetic study of FWT shows a good application to improve the crustal velocity models from the existed geological models and the seismic data of the different earthquake events happened in the Canterbury region.

Research papers, University of Canterbury Library

The purpose of this research is to investigate men’s experiences of the 2016 7.8 magnitude Kaikōura earthquake and Tsunami. While, research into the impacts of the earthquake has been conducted, few studies have examined how gender shaped people’s experiences of this natural hazard event. Analysing disasters through a gender lens has significantly contributed to disaster scholarship in identifying the resilience and vulnerabilities of individuals and communities pre- and post-disaster (Fordham, 2012; Bradshaw, 2013). This research employs understandings of masculinities (Connell, 2005), to examine men’s strengths and challenges in responding, recovering, and coping following the earthquake. Qualitative inquiry was carried out in Northern Canterbury and Marlborough involving 18 face-to-face interviews with men who were impacted by the Kaikōura earthquake and its aftermath. Interview material is being analysed using thematic and narrative analysis. Some of the preliminary findings have shown that men took on voluntary roles in addition to their fulltime paid work resulting in long hours, poor sleep and little time spent with family. Some men assisted wives and children to high ground then drove into the tsunami zone to check on relatives or to help evacuate people. Although analysis of the findings is currently ongoing, preliminary findings have identified that the men who participated in the study have been negatively impacted by the 2016 Kaikōura earthquake. A theme identified amongst participants was an avoidance to seek support with the challenges they were experiencing due to the earthquake. The research findings align with key characteristics of masculinity, including demonstrating risky behaviours and neglecting self or professional care. This study suggests that these behaviours affect men’s overall resilience, and thus the resilience of the wider community.

Research papers, University of Canterbury Library

This study explicitly investigates uncertainties in physics-based ground motion simulation validation for earthquakes in the Canterbury region. The simulations utilise the Graves and Pitarka (2015) hybrid methodology, with separately quantified parametric uncertainties in the comprehensive physics and simplified physics components of the model. The study is limited to the simulation of 148 small magnitude (Mw 3.5 – 5) earthquakes, with a point source approximation for the source rupture representations, which also enables a focus on a small number of relevant uncertainties. The parametric uncertainties under consideration were selected through sensitivity analysis, and specifically include: magnitude, Brune stress parameter and high frequency rupture velocity. Twenty Monte Carlo realisations were used to sample parameter uncertainties for each of the 148 events. Residuals associated with the following intensity measures: spectral acceleration, peak ground velocity, arias intensity and significant duration, were ascertained. Using these residuals, validation was performed through assessment of systematic biases in site and source terms from mixed-effects regression. Based on the results to date, initial standard deviation recommendations for parameter uncertainties, based on the Canterbury simulations have been obtained. This work ultimately provides an initial step toward explicit incorporation of modelling uncertainty in simulated ground motion predictions for future events, which will improve the use of simulation models in seismic hazard analysis. We plan to subsequently assess uncertainties for larger magnitude events with more complex ruptures, and events across a larger geographic region, as well as uncertainties due to path attenuation, site effects, and more general model epistemic uncertainties.

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 5 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 5th instalment covers the question of how much of the coast uplifted how much, recent lab work on seaweed responses to stressors, and more on our drone survey work to quantify earthquake impacts and recovery along 130 km of coastline in the intertidal zone!

Research papers, University of Canterbury Library

In response to the February 2011 earthquake, Parliament enacted the Canterbury Earthquake Recovery Act. This emergency legislation provided the executive with extreme powers that extended well beyond the initial emergency response and into the recovery phase. Although New Zealand has the Civil Defence Emergency Management Act 2002, it was unable to cope with the scale and intensity of the Canterbury earthquake sequence. Considering the well-known geological risk facing the Wellington region, this paper will consider whether a standalone “Disaster Recovery Act” should be established to separate an emergency and its response from the recovery phase. Currently, Government policy is to respond reactively to a disaster rather than proactively. In a major event, this typically involves the executive being given the ability to make rules, regulations and policy without the delay or oversight of normal legislative process. In the first part of this paper, I will canvas what a “Disaster Recovery Act” could prescribe and why there is a need to separate recovery from emergency. Secondly, I will consider the shortfalls in the current civil defence recovery framework which necessitates this kind of heavy governmental response after a disaster. In the final section, I will examine how

Research papers, University of Canterbury Library

This poster discusses several possible approaches by which the nonlinear response of surficial soils can be explicitly modelled in physics-based ground motion simulations, focusing on the relative advantages and limitations of the various methodologies. These methods include fully-coupled 3D simulation models that directly allow soil nonlinearity in surficial soils, the domain reduction method for decomposing the physical domain into multiple subdomains for separate simulation, conventional site response analysis uncoupled from the simulations, and finally, the use of simple empirically based site amplification factors We provide the methodology for an ongoing study to explicitly incorporate soil nonlinearity into hybrid broadband simulations of the 2010-2011 Canterbury, New Zealand earthquakes.

Research papers, University of Canterbury Library

This poster presents work to date on ground motion simulation validation and inversion for the Canterbury, New Zealand region. Recent developments have focused on the collection of different earthquake sources and the verification of the SPECFEM3D software package in forward and inverse simulations. SPECFEM3D is an open source software package which simulates seismic wave propagation and performs adjoint tomography based upon the spectral-element method. Figure 2: Fence diagrams of shear wave velocities highlighting the salient features of the (a) 1D Canterbury velocity model, and (b) 3D Canterbury velocity model. Figure 5: Seismic sources and strong motion stations in the South Island of New Zealand, and corresponding ray paths of observed ground motions. Figure 3: Domain used for the 19th October 2010 Mw 4.8 case study event including the location of the seismic source and strong motion stations. By understanding the predictive and inversion capabilities of SPECFEM3D, the current 3D Canterbury Velocity Model can be iteratively improved to better predict the observed ground motions. This is achieved by minimizing the misfit between observed and simulated ground motions using the built-in optimization algorithm. Figure 1 shows the Canterbury Velocity Model domain considered including the locations of small-to-moderate Mw events [3-4.5], strong motion stations, and ray paths of observed ground motions. The area covered by the ray paths essentially indicates the area of the model which will be most affected by the waveform inversion. The seismic sources used in the ground motion simulations are centroid moment tensor solutions obtained from GeoNet. All earthquake ruptures are modelled as point sources with a Gaussian source time function. The minimum Mw limit is enforced to ensure good signal-to-noise ratio and well constrained source parameters. The maximum Mw limit is enforced to ensure the point source approximation is valid and to minimize off-fault nonlinear effects.

Research papers, University of Canterbury Library

The operation of telecommunication networks is critical during business as usual times, and becomes most vital in post-disaster scenarios, when the services are most needed for restoring other critical lifelines, due to inherent interdependencies, and for supporting emergency and relief management tasks. In spite of the recognized critical importance, the assessment of the seismic performance for the telecommunication infrastructure appears to be underrepresented in the literature. The FP6 QuakeCoRE project “Performance of the Telecommunication Network during the Canterbury Earthquake Sequence” will provide a critical contribution to bridge this gap. Thanks to an unprecedented collaboration between national and international researchers and highly experienced asset managers from Chorus, data and evidences on the physical and functional performance of the telecommunication network after the Canterbury Earthquakes 2010-2011 have been collected and collated. The data will be processed and interpreted aiming to reveal fragilities and resilience of the telecommunication networks to seismic events

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 4 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 4th instalment covers recent work on seaweed recovery in the subtidal zone, ecological engineering in Waikoau / Lyell Creek, and a sneak preview of drone survey results!

Research papers, University of Canterbury Library

This report contributes to a collaborative project between the Marlborough District Council (MDC) and University of Canterbury (UC) which aims to help protect and promote the recovery of native dune systems on the Marlborough coast. It is centred around the mapping of dune vegetation and identification of dune protection zones for old-growth seed sources of the native sand-binders spinifex (Spinifex sericeus) and pīngao (Ficinia spiralis). Both are key habitat-formers associated with nationally threatened dune ecosystems, and pīngao is an important weaving resource and Ngāi Tahu taonga species. The primary goal is to protect existing seed sources that are vital for natural regeneration following major disturbances such as the earthquake event. Several additional protection zones are also identified for areas where new dunes are successfully regenerating, including areas being actively restored in the Beach Aid project that is assisting new native dunes to become established where there is available space.

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 6 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 6th instalment features the ‘new land’ created by the earthquake uplift of the coastline, recreational uses of beaches in Marlborough, and pāua survey work and hatchery projects with our partners in Kaikōura.

Research papers, University of Canterbury Library

Welcome to the Recover issue 3 newsletter from the Marine Ecology Research Group (MERG) at the University of Canterbury. Recover is designed to keep you updated on our MBIE funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). In this third instalment we are looking into recent paua, whitebait, and … work our team has undertaken.