The affect that the Christchurch Earthquake Sequence(CES) had on Christchurch residents was severe, and the consequences are still being felt today. The Ōtākaro Avon River Corridor (OARC) was particularly impacted, a geographic zone that had over 7,000 homes which needed to be vacated and demolished. The CES demonstrated how disastrous a natural hazard can be on unprepared communities. With the increasing volatility of climate change being felt around the world, considering ways in which communities can reduce their vulnerabilities to natural hazards is vital. This research explores how communities can reduce their vulnerabilities to natural hazards by becoming more adaptable, and in particular the extent to which tiny homes could facilitate the development of adaptive communities. In doing so, three main themes were explored throughout this research: (1) tiny homes, (2) environmental adaptation and (3) community adaptability. To ensure that it is relevant and provides real value to the local community, the research draws upon the local case study of the Riverlution Tiny House Village(RTHV), an innovative community approach to adaptable, affordable, low-impact, sustainable living on margins of land which are no longer suitable for permanent housing. The main findings of the research are that Christchurch is at risk of climate change and natural hazards and it is therefore important to consider ways in which communities can stay intact and connected while adapting to the risks they face. Tiny homes provide an effective way of doing so, as they represent a tangible way that people can take adaptation into their own hands while maintaining a high-quality lifestyle.
With sea level rise (SLR) fast becoming one of the most pressing matters for governments worldwide, there has been mass amounts of research done on the impacts of SLR. However, these studies have largely focussed on the ways that SLR will impact both the natural and built environment, along with how the risk to low-lying coastal communities can be mitigated, while the inevitable impacts that this will have on mental well-being has been understudied. This research has attempted to determine the ways in which SLR can impact the mental well-being of those living in a low-lying coastal community, along with how these impacts could be mitigated while remaining adaptable to future environmental change. This was done through conducting an in-depth literature review to understand current SLR projections, the key components of mental well-being and how SLR can influence changes to mental well-being. This literature review then shaped a questionnaire which was distributed to residents of the New Brighton coastline. This questionnaire asked respondents how they interact with the local environment, how much they know about SLR and its associated hazards, whether SLR causes any level of stress or worry along with how respondents feel that these impacts could be mitigated. This research found that SLR impacts the mental well-being of those living in low-lying coastal communities through various methods: firstly, the respondents perceived risk to SLR and its associated hazards, which was found to be influenced by the suburbs that respondents live in, their knowledge of SLR, their main sources of information and the prior experience of the Canterbury Earthquake Sequence (CES). Secondly, the financial aspects of SLR were also found to be drivers of stress or worry, with depreciating property values and rising insurance premiums being frequently noted by respondents. It was found that the majority of respondents agreed that being involved in and informed of the protection process, having more readable and accurate information, and an increased engagement with community events and greenspaces would help to reduce the stress or worry caused by SLR, while remaining adaptable to future environmental change.
Home address-based school zoning regulations are widely used in many countries as one means of selecting pupils and estimating future enrolment. However, there is little research regarding an alternative system of zoning for parents’ place of employment. Previous research has failed to analyse potential impacts from workplace-based zoning, including negating the effects of chain migration theory and settlement patterns to facilitate cultural integration, promoting the physical and mental wellbeing of families by enabling their close proximity during the day, as well as positive results concerning a volatile real estate market. As the modern family more often consists of one or both parents working full-time, the requirement of children to attend school near their home may not be as reasonably convenient as near their parents’ workplace. A case study was performed on one primary school in Christchurch, consisting of surveys and interviews of school stakeholders, including parents and staff, along with GIS mapping of school locations. This found deeper motivations for choosing a primary school, including a preference for cultural integration and the desire to school children under 14 years near their parents’ place of employment in case of illness or earthquake. These data suggest that the advantages of workplace-based zoning may be worth considering, and this thesis creates a framework for the Ministry of Education to implement this initiative in a pilot programme for primary schools in Christchurch.
The Covid-19 pandemic has brought to the foreground the importance of social connectedness for wellbeing, at the individual, community and societal level. Within the context of the local community, pro-connection facilities are fundamental to foster community development, resilience and public health. Through identifying the gap in social connectedness literature for Māori, this has created space for new opportunities and to reflect on what is already occurring in Ōtautahi. It is well documented that Māori experience unequal societal impacts across all health outcomes. Therefore, narrowing the inequities between Māori and non-Māori across a spectrum of dimensions is a priority. Evaluating the #WellconnectedNZ project, which explores the intersections between social connection and wellbeing is one way to trigger these conversations. This was achieved by curating a dissimilar set of community pro-connection facilities and organizing them into a Geographic Information System (GIS). Which firstly involved, the collecting and processing of raw data, followed by spatial analysis through creating maps, this highlighted the alignment between the distribution of places, population and social data. Secondly, statistical analysis focusing on the relationship between deprivation and accessibility. Finally, semi-structured interviews providing perceptions of community experience. This study describes findings following a kaupapa Māori research approach. Results demonstrated that, in general some meshblocks in Ōtautahi benefit from a high level of accessibility to pro-connection facilities; but with an urban-rural gradient (as is expected, further from the central business district (CBD) are less facilities). Additionally, more-deprived meshblocks in the Southern and Eastern suburbs of Christchurch have poorer accessibility, suggesting underlying social and spatial inequalities, likely exacerbated by Covid-19 and the Christchurch earthquakes. In this context, it is timely to (re)consider pro-connection places and their role in the development of social infrastructure for connected communities, in the community facility planning space. ‘We are all interwoven, we just need to make better connections’.
This research attempts to understand how the Christchurch rebuild is promoting urban liveability in the Central City, focussing on the influence of communities and neighbourhoods in this area. To do this, gathering the perceptions of Christchurch residents through surveys, a focus group and semi-structured interviews was carried out to see what aspects they believe contribute to creating more liveable places. These methods revealed that there are pockets of neighbourhoods and communities in the inner-city, but no overall sense of community. Results from the semi-structured interviews reinforced this; the current buyers of inner-city property are in the financial position to be able to do this, and they seem to be purchasing in this area due to convenience and investment rather than to join the existing communities in the area. Analysing the survey responses from Central City residents revealed contrasting results. Those currently living in the area felt there is a sense of community in the inner-city, but these are found in pockets of neighbourhoods around the Central City rather than in the overall area. The focus group revealed that community is further prioritised later in life, and that many of the community groups in the inner-city predominantly consist of those who have lived there since before the Christchurch Earthquake Series. However, participants of all three methods believed that the Central City is slowly becoming a lively and vibrant place. To improve urban liveability in the inner-city, it seems that prioritisation of the needs of current inner-city residents is required. Improving these neighbourhoods, whether it be through the implementation of services or providing more communal spaces, is needed to create stronger communities. The feelings of place, connectedness, and belonging that arise from being part of a community or well-connected neighbourhood can improve mental health and wellbeing, ultimately enhancing the overall health of the population as well as the perceived urban liveability of the area.
This research attempts to understand whether community resilience and perceived livability are influenced by housing typologies in Christchurch, New Zealand. Using recent resident surveys undertaken by the Christchurch City Council, two indexes were created to reflect livability and community resilience. Indicators used to create both indexes included (1) enjoyment living in neighbourhood (2) satisfaction with local facilities (3) safety walking and (4) safety using public transport, (5) sense of community (6) neighbour interactions, (7) home ownership and (8) civic engagement. Scores were attributed to 72 neighbourhoods across Christchurch –and each neighbourhood was classified in one of the following housing typologies; (1) earthquake damaged, (2) relatively undamaged, (3) medium density and (4) greenfield developments. Spatial analysis of index scores and housing classifications suggest housing typologies do influence resident’s perceived livability and community bonds to an extent. It was found that deprivation also had a considerable influence on these indexes as well as residential stability. These additional influences help explain why neighbourhoods within the same housing classification differ in their index scores. Based on these results, several recommendations have been made to the CCC in relation to future research, urban development strategies and suburb specific renewal projects. Of chief importance, medium density neighbourhoods and deprived neighbourhoods require conscious efforts to foster community resilience. Results indicate that community resilience might be more important than livability in having a positive influence on the lived experience of residents. While thoughtful design and planning are important, this research suggests geospatial research tools could enable better community engagement outcomes and planning outcomes, and this could be interwoven into proactive and inclusive planning approaches like placemaking.
Cities need places that contribute to quality of life, places that support social interaction. Wellbeing, specifically, community wellbeing, is influenced by where people live, the quality of place is important and who they connect with socially. Social interaction and connection can come from the routine involvement with others, the behavioural acts of seeing and being with others. This research consisted of 38 interviews of residents of Christchurch, New Zealand, in the years following the 2010-12 earthquakes. Residents were asked about the place they lived and their interactions within their community. The aim was to examine the role of neighbourhood in contributing to local social connections and networks that contribute to living well. Specifically, it focused on the role and importance of social infrastructure in facilitating less formal social interactions in local neighbourhoods. It found that neighbourhood gathering places and bumping spaces can provide benefit for living well. Social infrastructure, like libraries, parks, primary schools, and pubs are some of the places of neighbourhood that contributed to how well people can encounter others for social interaction. In addition, unplanned interactions were facilitated by the existence of bumping places, such as street furniture. The wellbeing value of such spaces needs to be acknowledged and factored into planning decisions, and local rules and regulations need to allow the development of such spaces.
The research is funded by Callaghan Innovation (grant number MAIN1901/PROP-69059-FELLOW-MAIN) and the Ministry of Transport New Zealand in partnership with Mainfreight Limited. Need – The freight industry is facing challenges related to climate change, including natural hazards and carbon emissions. These challenges impact the efficiency of freight networks, increase costs, and negatively affect delivery times. To address these challenges, freight logistics modelling should consider multiple variables, such as natural hazards, sustainability, and emission reduction strategies. Freight operations are complex, involving various factors that contribute to randomness, such as the volume of freight being transported, the location of customers, and truck routes. Conventional methods have limitations in simulating a large number of variables. Hence, there is a need to develop a method that can incorporate multiple variables and support freight sustainable development. Method - A minimal viable model (MVM) method was proposed to elicit tacit information from industrial clients for building a minimally sufficient simulation model at the early modelling stages. The discrete-event simulation (DES) method was applied using Arena® software to create simulation models for the Auckland and Christchurch corridor, including regional pick-up and delivery (PUD) models, Christchurch city delivery models, and linehaul models. Stochastic variables in freight operations such as consignment attributes, customer locations, and truck routes were incorporated in the simulation. The geographic information system (GIS) software ArcGIS Pro® was used to identify and analyse industrial data. The results obtained from the GIS software were applied to create DES models. Life cycle assessment (LCA) models were developed for both diesel and battery electric (BE) trucks to compare their life cycle greenhouse gas (GHG) emissions and total cost of ownership (TCO) and support GHG emissions reduction. The line-haul model also included natural hazards in several scenarios, and the simulation was used to forecast the stock level of Auckland and Christchurch depots in response to each corresponding scenario. Results – DES is a powerful technique that can be employed to simulate and evaluate freight operations that exhibit high levels of variability, such as regional pickup and delivery (PUD) and linehaul. Through DES, it becomes possible to analyse multiple factors within freight operations, including transportation modes, routes, scheduling, and processing times, thereby offering valuable insights into the performance, efficiency, and reliability of the system. In addition, GIS is a useful tool for analysing and visualizing spatial data in freight operations. This is exemplified by their ability to simulate the travelling salesman problem (TSP) and conduct cluster analysis. Consequently, the integration of GIS into DES modelling is essential for improving the accuracy and reliability of freight operations analysis. The outcomes of the simulation were utilised to evaluate the ecological impact of freight transport by performing emission calculations and generating low-carbon scenarios to identify approaches for reducing the carbon footprint. LCA models were developed based on simulation results. Results showed that battery-electric trucks (BE) produced more greenhouse gas (GHG) emissions in the cradle phase due to battery manufacturing but substantially less GHG emissions in the use phase because of New Zealand's mostly renewable energy sources. While the transition to BE could significantly reduce emissions, the financial aspect is not compelling, as the total cost of ownership (TCO) for the BE truck was about the same for ten years, despite a higher capital investment for the BE. Moreover, external incentives are necessary to justify a shift to BE trucks. By using simulation methods, the effectiveness of response plans for natural hazards can be evaluated, and the system's vulnerabilities can be identified and mitigated to minimize the risk of disruption. Simulation models can also be utilized to simulate adaptation plans to enhance the system's resilience to natural disasters. Novel contributions – The study employed a combination of DES and GIS methods to incorporate a large number of stochastic variables and driver’s decisions into freight logistics modelling. Various realistic operational scenarios were simulated, including customer clustering and PUD truck allocation. This showed that complex pickup and delivery routes with high daily variability can be represented using a model of roads and intersections. Geographic regions of high customer density, along with high daily variability could be represented by a two-tier architecture. The method could also identify delivery runs for a whole city, which has potential usefulness in market expansion to new territories. In addition, a model was developed to address carbon emissions and total cost of ownership of battery electric trucks. This showed that the transition was not straightforward because the economics were not compelling, and that policy interventions – a variety were suggested - could be necessary to encourage the transition to decarbonised freight transport. A model was developed to represent the effect of natural disasters – such as earthquake and climate change – on road travel and detour times in the line haul freight context for New Zealand. From this it was possible to predict the effects on stock levels for a variety of disruption scenarios (ferry interruption, road detours). Results indicated that some centres rather than others may face higher pressure and longer-term disturbance after the disaster subsided. Remedies including coastal shipping were modelled and shown to have the potential to limit the adverse effects. A philosophical contribution was the development of a methodology to adapt the agile method into the modelling process. This has the potential to improve the clarification of client objectives and the validity of the resulting model.
This dissertation addresses a diverse range of applied aspects in ground motion simulation validation via the response of complex structures. In particular, the following topics are addressed: (i) the investigation of similarity between recorded and simulated ground motions using code-based 3D irregular structural response analysis, (ii) the development of a framework for ground motion simulations validation to identify the cause of differences between paired observed and simulated dataset, and (iii) the illustration of the process of using simulations for seismic performance-based assessment. The application of simulated ground motions is evaluated for utilisation in engineering practice by considering responses of 3D irregular structures. Validation is performed in a code-based context when the NZS1170.5 (NZS1170.5:2004, 2004) provisions are followed for response history analysis. Two real buildings designed by engineers and physically constructed in Christchurch before the 2010-2011 Canterbury earthquake sequence are considered. The responses are compared when the buildings are subjected to 40 scaled recorded and their subsequent simulated ground motions selected from 22 February 2011 Christchurch. The similarity of recorded and simulated responses is examined using statistical methods such as bootstrapping and hypothesis testing to determine whether the differences are statistically significant. The findings demonstrate the applicability of simulated ground motion when the code-based approach is followed in response history analysis. A conceptual framework is developed to link the differences between the structural response subjected to simulated and recorded ground motions to the differences in their corresponding intensity measures. This framework allows the variability to be partitioned into the proportion that can be “explained” by the differences in ground motion intensity measures and the remaining “unexplained” variability that can be attributed to different complexities such as dynamic phasing of multi-mode response, nonlinearity, and torsion. The application of this framework is examined through a hierarchy of structures reflecting a range of complexity from single-degree-of-freedom to 3D multi-degree-of-freedom systems with different materials, dynamic properties, and structural systems. The study results suggest the areas that ground motion simulation should focus on to improve simulations by prioritising the ground motion intensity measures that most clearly account for the discrepancies in simple to complex structural responses. Three approaches are presented to consider recorded or simulated ground motions within the seismic performance-based assessment framework. Considering the applications of ground motions in hazard and response history analyses, different pathways in utilising ground motions in both areas are explored. Recorded ground motions are drawn from a global database (i.e., NGA-West2 Ancheta et al., 2014). The NZ CyberShake dataset is used to obtain simulations. Advanced ground motion selection techniques (i.e., generalized conditional intensity measure, GCIM) are used for ground motion selection at a few intensity levels. The comparison is performed by investigating the response of an example structure (i.e., 12-storey reinforced concrete special moment frame) located in South Island, NZ. Results are compared and contrasted in terms of hazard, groundmotion selection, structural responses, demand hazard, and collapse risk, then, the probable reasons for differences are discussed. The findings from this study highlight the present opportunities and shortcomings in using simulations in risk assessment. i
Improving community resilience requires a way of thinking about the nature of a community. Two complementary aspects are proposed: the flows connecting the community with its surrounding environment and the resources the community needs for its ongoing life. The body of necessary resources is complex, with many interactions between its elements. A systems approach is required to understand the issues adequately. Community resilience is discussed in general terms together with strategies for improving it. The ideas are then illustrated and amplified by an extended case study addressing means of improving the resilience of a community on the West Coast of New Zealand to natural disasters. The case study is in two phases. The first relies on a mix of on-the-ground observations and constructed scenarios to provide recommendations for enhancing community resilience, while the second complements the first by developing a set of general lessons and issues to be addressed from observations of the Christchurch earthquakes of 2010 and 2011.
Canta Magazine Volume 82 Issue 6 from 4 May 2011.
Canta Magazine Volume 82 Issue 0 from 14 March 2011.
Canta Magazine Volume 82 Issue 1 from 23 March 2011.
Canta Magazine Volume 82 Issue 11 from 13 June 2011.
Canta Magazine Volume 82 Issue 5 20 from April 2011.
Page 6 of Section A of the Christchurch Press, published on Wednesday 22 February 2012.
The research presented in this thesis investigated the environmental impacts of structural design decisions across the life of buildings located in seismic regions. In particular, the impacts of expected earthquake damage were incorporated into a traditional life cycle assessment (LCA) using a probabilistic method, and links between sustainable and resilient design were established for a range of case-study buildings designed for different seismic performance objectives. These links were quantified using a metric herein referred to as the seismic carbon risk, which represents the expected environmental impacts and resource use indicators associated with earthquake damage during buildings’ life. The research was broken into three distinct parts: (1) a city-level evaluation of the environmental impacts of demolitions following the 2010/2011 Canterbury earthquake sequence in New Zealand, (2) the development of a probabilistic framework to incorporate earthquake damage into LCA, and (3) using case-study buildings to establish links between sustainable and resilient design. The first phase of the research focused on the environmental impacts of demolitions in Christchurch, New Zealand following the 2010/2011 Canterbury Earthquake Sequence. This large case study was used to investigate the environmental impact of the demolition of concrete buildings considering the embodied carbon and waste stream distribution. The embodied carbon was considered here as kilograms of CO2 equivalent that occurs on production, construction, and waste management stage. The results clearly demonstrated the significant environmental impacts that can result from moderate and large earthquakes in urban areas, and the importance of including environmental considerations when making post-earthquake demolition decisions. The next phase of the work introduced a framework for incorporating the impacts of expected earthquake damage based on a probabilistic approach into traditional LCA to allow for a comparison of seismic design decisions using a carbon lens. Here, in addition to initial construction impacts, the seismic carbon risk was quantified, including the impacts of seismic repair activities and total loss scenarios assuming reconstruction in case of non-reparability. A process-based LCA was performed to obtain the environmental consequence functions associated with structural and non-structural repair activities for multiple environmental indicators. In the final phase of the work, multiple case-study buildings were used to investigate the seismic consequences of different structural design decisions for buildings in seismic regions. Here, two case-study buildings were designed to multiple performance objectives, and the upfront carbon costs, and well as the seismic carbon risk across the building life were compared. The buildings were evaluated using the framework established in phase 2, and the results demonstrated that the seismic carbon risk can significantly be reduced with only minimal changes to the upfront carbon for buildings designed for a higher base shear or with seismic protective systems. This provided valuable insight into the links between resilient and sustainable design decisions. Finally, the results and observations from the work across the three phases of research described above were used to inform a discussion on important assumptions and topics that need to be considered when quantifying the environmental impacts of earthquake damage on buildings. These include: selection of a non-repairable threshold (e.g. a value beyond which a building would be demolished rather than repaired), the time value of carbon (e.g. when in the building life the carbon is released), the changing carbon intensity of structural materials over time, and the consideration of deterministic vs. probabilistic results. Each of these topics was explored in some detail to provide a clear pathway for future work in this area.
Page 6 of Section A of the Christchurch Press, published on Tuesday 8 March 2011.
A video of a presentation by Dr William Rolleston, President of New Zealand Federated Farmers, at the 2016 Seismics in the City Conference. The presentation is titled, "Sacred Cows v the Clobbering Machine?".The abstract for the presentation reads, "Urban/rural interdependence, science and innovation in Canterbury."
Page 11 of Section B of the Christchurch Press, published on Friday 10 September 2010.
Page 11 of Section A of the Christchurch Press, published on Friday 18 March 2011.
A PDF copy of the North Canterbury News community newspaper, published on Tuesday 7 September 2010.
A PDF copy of the Selwyn Times community newspaper, published on Tuesday 14 September 2010.
A PDF copy of The Star newspaper, published on Wednesday 30 March 2011.
Page 13 of Section A of the Christchurch Press, published on Friday 11 March 2011.
Page 9 of Section A of the Christchurch Press, published on Saturday 19 March 2011.
Page 15 of Section A of the Christchurch Press, published on Saturday 19 March 2011.
Page 27 of Section A of the Christchurch Press, published on Wednesday 16 March 2011.
Page 12 of Section A of the Christchurch Press, published on Monday 21 March 2011.
Page 3 of Section A of the Christchurch Press, published on Monday 18 April 2011.