The South New Brighton jetty has been closed for 3 or 4 years (fenced off) then the fence was removed and it was "open", but nothing has happened to it since the earthquakes, but it is closed again now, although it looks like a home made sign!
The ticket office at Lancaster Park (AMI Stadium), not used since the February 2011 earthquake. Windows broken and door boarded up. We are still waiting to see what the outcome is for this stadium. Government want a new one closer to the CBD, so there is talk of this being demolished, while others want it repaired.
20161018_9063_7D2-70 Restricted Area (292/366) In the suburban red zone on Avonside Drive. #7826
None
20161112_9961_7D2-70 The future face of Christchurch? Cultivate Christchurch is operating this urban farm in the city, about 5-10 minutes walk to Cathedral Square. Many of the buildings in this area were demolished after the earhquakes, and in the background is a new building on Kilmore Street.
20161211_0216_1D3-24 Six years on A view that was impossible six years ago. There was a group of buildings including another high-rise in the vacant area in the middle ground. #7986
73 months after the earthquake that damaged it, the jetty at South New Brighton Domain is still not repaired. Seven years ago it was straight and level. Dull, flat and orrible (horrible) light meant this image was destined to become monochrome!
20170509_6305_7D2-62 Remembrance (129/365) Today was the first time I have been to the earthquake memorial since it was completed and opened on 22nd February 2017, six years after the devastating quake that killed the 185 that are named on this wall. I knew two of the people on the list.
Only two of 20 houses left in the Rawhiti Earthquake Village. This from the sign on perimeter fence: "Since 2011, Rawhiti Domain has been used to provide temporary accommodation for those affected by the Canterbury earthquakes. Over 200 households have used the 20 houses while their own homes have been repaired or rebuilt. The demand for acco...
20170918_6084_7D2-41 Demolition still happening (260/365) Six ½ years after the earthquakes there are still a few demolitions taking place. This one is a block of council owned flats. Whether the whole complex is being demolished or not I don't know., but here the centre block of three is being demolished. The green grass is what was sections...
An impressive Cabbage Tree (Cordyline australis) that was in someone's back yard prior to the demolition of houses post the 2011 earthquake.
20171103_5582_1D3-38 Trees in the Red Zone (307/365) In what used to be sections with houses and yards. Between late 2011 and 2014 the houses (well 95% of them) were removed due to land dropping in the 2011 earthquakes and the proximity of the Avon River, tidal in this area. #8859
A Phoenis Palm (Phoenix canariensis) that was in someone's back yard prior to the demolition of houses post the 2011 earthquake.
17mm M42 Takumar Fisheye on a Canon 1D MkIII (1.3x crop factor) via an adaptor ring.
Awaiting restoration, the Cathedral was damaged in a series of major earthquakes. 52 in 2018: 30. Ruin or Archaelogical site
None
This is St Peters Riccarton. It was damaged in one of the two big Earthquakes to hit Christchurch in September 2010 and February 2011. Its taken a LONG time for work to really get going, but now that it is, they are also upgrading and extending the church with a modern annexe.
None
During the 2010/2011 Canterbury earthquakes, Reinforced Concrete Frame with Masonry Infill (RCFMI) buildings were subjected to significant lateral loads. A survey conducted by Christchurch City Council (CCC) and the Canterbury Earthquake Recovery Authority (CERA) documented 10,777 damaged buildings, which included building characteristics (building address, the number of storeys, the year of construction, and building use) and post-earthquake damage observations (building safety information, observed damage, level of damage, and current state of the buildings). This data was merged into the Canterbury Earthquake Building Assessment (CEBA) database and was utilised to generate empirical fragility curves using the lognormal distribution method. The proposed fragility curves were expected to provide a reliable estimation of the mean vulnerability for commercial RCFMI buildings in the region. http://www.13thcms.com/wp-content/uploads/2017/05/Symposium-Info-and-Presentation-Schedule.pdf VoR - Version of Record
The standard way in which disaster damages are measured involves examining separately the number of fatalities, of injuries, of people otherwise affected, and the financial damage that natural disasters cause. Here, we implement a novel way to aggregate these separate measures of disaster impact and apply it to two recent catastrophic events: the Christchurch (New Zealand) earthquakes and the Greater Bangkok (Thailand) floods of 2011. This new measure, which is similar to the World Health Organization’s calculation of Disability Adjusted Life Years (DALYs) lost from the burden of diseases and injuries, is described in detail in Noy (2014). It allows us to conclude that New Zealand lost 180 thousand lifeyears as a result of the 2011 events, and Thailand lost 2,644 thousand years. In per capita terms, the loss is similar, with both countries losing about 15 days per person due to the 2011 catastrophic events in these two countries. We also compare these events to other potentially similar events.
We examine the role of business interruption insurance in business recovery following the Christchurch earthquake in 2011 in the short- and medium-term. In the short-term analysis, we ask whether insurance increases the likelihood of business survival in the aftermath of a disaster. We find only weak evidence that those firms that had incurred damage, but were covered by business interruption insurance, had higher likelihood of survival post-quake compared with those firms that did not have insurance. This absence of evidence may reflect the high degree of uncertainty in the months following the 2011 earthquake and the multiplicity of severe aftershocks. For the medium-term, our results show a more explicit role for insurance in the aftermath of a disaster. Firms with business interruption insurance have a higher probability of increasing productivity and improved performance following a catastrophe. Furthermore, our results show that those organisations that receive prompt and full payments of their claims have a better recovery, in terms of profitability and a subjective ‘”better off” measure’ than those that had protracted or inadequate claim payments (less than 80% of the claim paid within 2.5 years). Interestingly, the latter group does worse than those organisations that had damage but no insurance coverage. This analysis strongly indicates the importance not only of good insurance coverage, but of an insurance system that also delivers prompt claim payments. As a first paper attempting to empirically identify a causal effect of insurance on business recovery, we also emphasize some caveats to our analysis.
Earthquakes are insured only with public sector involvement in high-income countries where the risk of earthquakes is perceived to be high. The proto-typical examples of this public sector involvement are the public earthquake insurance schemes in California, Japan, and New Zealand (NZ). Each of these insurance programs is structured differently, and the purpose of this paper is to examine these differences using a concrete case-study, the sequence of earthquakes that occurred in the Christchurch, New Zealand, in 2011. This event turned out to have been the most heavily insured earthquake event in history. We examine what would have been the outcome of the earthquakes had the system of insurance in NZ been different. In particular, we focus on the public earthquake insurance programs in California (the California Earthquake Authority - CEA), and in Japan (Japanese Earthquake Reinsurance - JER). Overall, the aggregate cost to the public insurer in NZ was $NZ 11.1 billion in its response to the earthquakes. If a similar-sized disaster event had occurred in Japan and California, homeowners would have received $NZ 2.5 billion and $NZ 1.4 billion from the JER and CEA, respectively. We further describe the spatial and distributive patterns of these different scenarios.
We measure the longer-term effect of a major earthquake on the local economy, using night-time light intensity measured from space, and investigate whether insurance claim payments for damaged residential property affected the local recovery process. We focus on the destructive Christchurch earthquake of 2011 as our case study. In this event more than 95% of residential housing units were covered by insurance, but insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery and describe the recovery’s determinants. We also find that insurance payments contributed significantly to the process of economic recovery after the earthquake, but delayed payments were less affective and cash settlement of claims were more affective in contributing to local recovery than insurance-managed rebuilding.
We estimate the causal effects of a large unanticipated natural disaster on high schoolers’ university enrolment decisions and subsequent medium-term labour market outcomes. Using national administrative data after a destructive earthquake in New Zealand, we estimate that the disaster raises tertiary education enrolment of recent high school graduates by 6.1 percentage points. The effects are most pronounced for males, students who are academically weak relative to their peers, and students from schools directly damaged by the disaster. As relatively low ability males are overrepresented in sectors of the labour market helped by the earthquake, greater demand for university may stem from permanent changes in deeper behavioural parameters such as risk aversion or time preference, rather than as a coping response to poor economic opportunities.
The lateral capacity of a conventional CLT shear wall is often governed by the strength and stiffness of its connections, which do not significantly utilize the in-plane strength of the CLT. Therefore, CLT shear walls are not yet being used efficiently in the construction of mass timber buildings due to a lack of research on high-capacity connections and alternative wall configurations. In this study, cyclic experiments were completed on six full-scale, 5-ply cantilever CLT shear walls with high-capacity hold-downs using mixed angle screws and bolts. All specimens exhibited significantly higher strength and stiffness than previously tested conventional CLT shear walls in the literature. The base connections demonstrated ductile failure modes through yielding of the hold-down connections. Based on the experimental results, numerical models were calibrated to investigate the seismic behaviour of CLT shear walls for prototype buildings of 3 and 6-storeys in Christchurch, NZ. As an alternative to cantilever (single) shear walls, a type of coupled wall with steel link beams between adjacent CLT wall piers was investigated. Effective coupling requires the link beam-to-wall connections to have adequate strength to ensure ductile link beam responses and adequate stiffness to yield the link beams at a relatively low inter-storey drift level. To this end, three beam-to-wall connection types were developed and cyclically tested to investigate their behaviour and feasibility. Based on the test results of the critical connection, a 3-storey, 2/3-scale coupled CLT wall specimen with three steel link beams and mixed angle screwed hold-downs was cyclically tested to evaluate its performance and experimentally validate the system concept. The test results showed a relatively high lateral strength compared to conventional CLT shear walls, as well as a high system ductility ratio of 7.6. Failure of the system was characterised by combined bending and withdrawal of the screws in the mixed angle screw hold-downs, yielding and eventual inelastic buckling of the steel link beams, CLT toe crushing, and local CLT delamination. Following the initial test, the steel link beams, mixed angle screw hold-downs, and damaged CLT regions were repaired, then the wall specimen was re-tested. The repaired wall behaved similarly to the original test and exhibited slightly higher energy dissipation and peak strength, but marginally more rapid strength deterioration under cyclic loading. Several hybrid coupled CLT shear walls were numerically modelled and calibrated based on the results of the coupled wall experiments. Pushover analyses were conducted on a series of configurations to validate a capacity design method for the system and to investigate reasonable parameter values for use in the preliminary design of the system. Additionally, an iterative seismic design method was proposed and used to design sample buildings of 6, 8, and 10-storeys using both nonlinear pushover and nonlinear time history analyses to verify the prototype designs. Results of the sample building analyses demonstrated adequate seismic behaviour and the proposed design parameters were found to be appropriate. In summary, high-capacity CLT shear walls can be used for the resistance of earthquakes by using stronger base connections and coupled wall configurations. The large-scale experimental testing in this study has demonstrated that both cantilever and coupled CLT shear walls are feasible LLRSs which can provide significantly greater lateral strength, stiffness, and energy dissipation than conventional CLT shear wall configurations.
- The Avon-Ōtākaro Redzone is an 11 kilometer stretch of land along the Avon-Ōtākaro River in Christchurch. - This project focused on the creation of a publicly available biodiversity map of the AvonŌtākaro River Corridor, a project undertaken as part of the ecological restoration of the Christchurch redzone. - This project originated from the Christchurch 2010-2011 earthquake sequence which saw liquefaction damage along 11km of the Avon River. Under guidance from The Nature Lab & Ōtākaro Living Laboratory, and various other experts, the primary research objective was to map historical biodiversity, identify hotspots, and assess areas for potential revegetation. - The data collected came from historical black maps, current iNaturalist data, and soil classification information. - The findings show that, pre-colonialism, the area was composed of herbaceous areas, wetlands, native shrubland, and tussock land, with key plants such as river, fern, tutu, and cabbage trees. - The post-earthquake analysis shows a transition from a residential area to patchy grasslands and swampy areas. - The findings also showed a strong relationship between historic sites and soil classifications, providing knowledge for past and future vegetation patterns and spread. - This map will be a valuable resource for conservation efforts and public engagement as the area transitions into a blue-green corridor.
This thesis focuses on the role of legal preparedness for managing large-scale urban disasters in Aotearoa New Zealand. It uses the Auckland Volcanic Field as a case study to answer the question: ‘is New Zealand’s current legal framework prepared to respond to and recover from a large-scale urban disaster?’. The Auckland Volcanic Field was chosen as the main case study because a future eruption is a low likelihood, high-impact event that New Zealand is going to have to manage in the future. Case studies are a key feature of this thesis as both New Zealand based and overseas examples are used to explore the role of legal preparedness by identifying and investigating a range of legal issues that need to be addressed in advance of a future Auckland Volcanic Field eruption. Of particular interest is the impact of legal preparedness for the recovery phase. The New Zealand case studies include; Canterbury earthquake sequence 2010-2011, the Kaikōura earthquake 2016, the Auckland flooding 2018, and the North Island Severe Weather event 2023, which encompasses both the Auckland Anniversary weekend flooding and Cyclone Gabrielle. As New Zealand has not experienced a large-scale urban volcanic eruption, overseas examples are explored to provide insights into the legal issues that are volcano specific. The overseas volcanic case studies cover eruptions in Heimaey (Iceland), the Soufrière Hills (Montserrat and the Grenadines), La Soufrière (St Vincent) and Tungurahua (Ecuador). New Zealand’s past experiences highlight a trend for introducing post-event legal frameworks to manage recovery. Consequently, the current disaster management system is not prioritising legal preparedness and instead is choosing to rely on exceptional powers. Unsurprisingly, the introduction of new post-event recovery frameworks has repercussions. In New Zealand, new post-event legal frameworks are introduced swiftly under urgency, they contain broad unstructured decision-making powers, and are often flawed. As these exceptional new frameworks sit outside the ‘normal’ legal frameworks, they in effect create a parallel “shadow system”. Based on the evidence explored in this thesis it does not appear that Auckland’s current disaster management framework is prepared to deal with a large-scale urban event caused by an Auckland Volcanic Field eruption. Following this conclusion, it is the submission of this thesis that New Zealand’s current legal framework is not prepared to respond to and recover from a large-scale urban disaster. To become legally prepared, New Zealand needs to consider the legal tools required to manage large-scale urban disasters in advance. This will prevent the creation of a legal vacuum in the aftermath of disasters and the need for new recovery frameworks. Adopting a new attitude will require a change in approach towards legal preparedness which prioritises it, rather than sidelining it. This may also require changes within New Zealand’s disaster management system including the introduction of a formal monitoring mechanism, which will support and prioritise legal preparedness. This thesis has shown that not legally preparing for future disasters is a choice which carries significant consequences. None of these consequences are inevitable when managing large-scale disasters, however they are inevitable when frameworks are not legally prepared in advance. To not legally prepare, is to prepare to fail and thus create a disaster by choice.
Picture this, you are relaxing at home enjoying the afternoon sun. It is another beautiful Christchurch day in late 2017. There is a knock at the door, you’ve been expecting it. It is a member of the Christchurch Health and Development Study, here to conduct your prearranged interview. The interview request did not come as a surprise of course, you have been participating in these interviews yourself sporadically throughout your adult life, and prior to that you attended many alongside your parents. In fact, you have been answering the studies interview your whole life. Transcripts of these interviews sit in the studies database alongside copies of school reports, health records and a wealth of other information. It has been this way since birth, since your mother was approached back in 1977, not long after you had arrived in this world, and asked if she would consent to participating in the study. She, along with many other Cantabrian new mothers from that year, agreed and the Christchurch Health and Development Study was born. Since then, these interviews have become a matter of routine for you. As life went on many things changed, but one thing that was constant was the sporadic visit from an interviewer of the study. The current interview is a little different from most of the others, however. Last time an interviewer visited in 2012, you were asked if you would like to conduct an earthquake-specific interview, you agreed. This time, the same question was asked. Why? Well because you were there that day of course. The day of the 22nd February 2011 when a major earthquake struck Canterbury. You were there in the centre of the city as buildings came crashing down and people ran for safety. You were there for the chaos. Your knee dully aches, it never did quite heal properly and strangely seems to flare up whenever you think back to that day. A lasting reminder. It is a difficult subject, but you agree to the second earthquake-specific interview. You understand the purpose of the study, and the value of the data collected. You take a sip of the cup of tea politely made upon the interviewer’s arrival, lean back into the comfort of your couch and cast your mind back to that fateful day. So, what does this study mean? Why still participate, all these years later? Over time it has become more apparent as to how valuable this information could be, considering all the experiences through the life course, and to think of the experiences that others in the cohort have had too. How differently have events affected people from all walks of life, who just so happened to be born within the same few months. We can use the data from this study to better understand situations when using life course characteristics which can hopefully influence decision making and population health within New Zealand.
Many contemporary urban communities are challenged by increased flood risks and rising temperatures, declining water quality and biodiversity, and reduced mental, physical, cultural and social wellbeing. The development of urban blue-green infrastructure (BGI), defined as networks of natural and semi-natural blue-green spaces which enable healthy ecosystem processes, has been identified as one approach to mitigate these challenges and enable more liveable cities. Multiple benefits associated with urban BGI have been identified, including reduced flood risk and temperatures, improved water quality and biodiversity, enhanced mental and physical wellbeing, strengthened social cohesion and sense of place, and the facilitation of cultural connections and practices. However, socio-cultural benefits have tended to be neglected in BGI research and design, resulting in a lack of awareness of how they may be maximised in BGI design. As such, this research sought to understand how BGI can best be designed to enable liveable cities. Four questions were considered: (i) what benefits are associated with urban BGI, (ii) how does the design process influence the benefits achieved by BGI, (iii) what challenges are encountered during BGI design, and (iv) how might the incorporation of communities and Indigenous knowledge into BGI research and design enhance current understandings and applications of urban BGI? To address these questions, a mixed methods case study approach was employed in Ōtautahi Christchurch and Kaiapoi. The four selected case studies were Te Oranga Waikura, Wigram Basin, Te Kuru and the Kaiapoi Honda Forest. The cases are all council owned urban wetlands which were primarily designed or retrofitted to reduce urban flood risks following the Canterbury Earthquake Sequence. To investigate BGI design processes in each case, as well as how communities interact with, value and benefit from these spaces. BGI projects were found to be designed by interdisciplinary design teams driven by stormwater engineers, landscape architects and ecologists which prioritised bio-physical outcomes. Further, community and Indigenous engagement approaches closely resembled consultation, with the exception of Te Kuru which employed a co-design approach between councils and Indigenous and community groups. This co-design approach was found to enhance current understandings and applications of urban BGI, while uncovering multiple socio-cultural values to be incorporated into design, such as access to cultural healing resources, increased community connections to water, and facilitating cultural monitoring methodologies and citizen science initiatives. Communities frequently identified the opportunity to connect with natural environments and enhanced mental and physical wellbeing as key benefits of BGI. Conversely, strengthened social cohesion, sense of place and cultural connections were infrequently identified as benefits, if at all. This finding indicates a disconnect between the bio-physical benefits which drive BGI design and the outcomes which communities value. As such, there is a need for future BGI design to more fully consider and design for socio- cultural outcomes to better enable liveable cities. To better design BGI to enhance urban liveability, this research makes three key contributions. First, there is a need to advance current approaches to transdisciplinary design to better account for the full scope of perspectives and values associated with BGI. Second, there is a need to transition towards relational co-design with Indigenous and community groups and knowledge. Third, it is important to continue to monitor, reflect on and share both positive and negative BGI design experiences to continually improve outcomes. The incorporation of social and cultural researchers, knowledges and perspectives into open and collaborative transdisciplinary design teams is identified as a key method to achieve these opportunities.
Natural disasters are highly traumatic for those who experience them, and they can have an immense and often lasting emotional impact (Cox et al., 2008). Emotion has been studied in linguistics through its enactment in language, and this field of research has increased over the past decades. Despite this, the expression of emotion in post-disaster narratives is a largely unexplored field of research. This thesis investigates how emotion is expressed in narratives taken from the QuakeBox corpus (Walsh et al., 2013), recorded, following the Christchurch earthquakes, in 2012 and rerecorded in 2019. I take a mixed methods approach, combining computer-based emotion recognition software and discourse analytic techniques, to explore the expression of emotion at both a broad and narrow level. Two emotion recognition programs, Empath (Fast et al., 2016) and Speechbrain (Ravanelli et al., 2021), are employed to measure the levels of positive and negative emotion detected in a wide dataset of participants, which are investigated in relation to the gender and age of participants, and the temporal difference between the first and second QuakeBox recordings. In a second phase, a subset of these participants’ narratives was analysed qualitatively, exploring the co-construction of emotion and identity through a social constructionist lens and examining the societal Discourses present in the earthquake narratives. The findings highlight the relevance of gender in the expression of emotion. Female speakers have higher levels of positive emotion than non-female speakers in the findings of both emotion recognition programs, and there is a clear gendered difference in the construction of identity in the narratives, influencing the expression of emotion. The expression of emotion also appears to be mediated by New Zealand culture. Within this, a Discourse of the Christchurch earthquakes emerges, with motifs of luck, gratitude, and community, which reflects the values of the people of Christchurch at the time. Findings reinforced in both phases of the analysis also indicate differences between the lexical content and acoustic features in the emotion expressions, supporting previous research that argues that the expression of emotion, as a performative act, does not reflect the speaker’s inner state directly. This research adds a new dimension to (socio)linguistic research on emotion, as well as providing insight into how crisis survivors display emotion in their post-disaster narratives.