Poetry in a Time of Calamity: A Humanities Response to the Canterbury Eart…
Research papers, University of Canterbury Library
None
None
None
Recent severe earthquakes, such as Christchurch earthquake series, worldwide have put emphasis on building resilience. In resilient systems, not only life is protected, but also undesirable economic effects of building repair or replacement are minimized following a severe earthquake. Friction connections are one way of providing structure resilience. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs), and the symmetric friction connections (SFCs) in braces of the braced frames. Experimental and numerical studies on components have been conducted internationally. However, actual building performance depends on the many interactions, occurring within a whole building system, which may be difficult to determine accurately by numerical modelling or testing of structural components alone. Dynamic inelastic testing of a full-scale multi-storey composite floor building with full range of non-structural elements (NSEs) has not yet been performed, so it is unclear if surprises are likely to occur in such a system. A 9 m tall three-storey configurable steel framed composite floor building incorporating friction-based connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. Beams and columns are designed to remain elastic during an earthquake event, with all non-linear behaviour occurring through stable sliding frictional behaviour, dissipating energy by SHJAFCs used in MRFs and SFCs in braced frames, with and without Belleville springs. Structural systems are configurable, allowing different moment and braced frame structural systems to be tested in two horizontal directions. In some cases, these systems interact with rocking frame or rocking column system in orthogonal directions subjected to unidirectional and bidirectional horizontal shaking. The structure is designed and detailed to undergo, at worst, minor damage under series of severe earthquakes. NSEs applied include precast-concrete panels, glass curtain walling, internal partitions, suspended ceilings, fire sprinkler piping as well as some other common contents. Some of the key design considerations are presented and discussed herein
Lake Taupō in New Zealand is associated with frequent unrest and small to moderate eruptions. It presents a high consequence risk scenario with immense potential for destruction to the community and the surrounding environment. Unrest associated with eruptions may also trigger earthquakes. While it is challenging to educate people about the hazards and risks associated with multiple eruptive scenarios, effective education of students can lead to better mitigation strategies and risk reduction. Digital resources with user-directed outcomes have been successfully used to teach action oriented skills relevant for communication during volcanic crisis [4]. However, the use of choose your own adventure strategies to enhance low probability risk literacy for Secondary school outreach has not been fully explored. To investigate how digital narrative storytelling can mediate caldera risk literacy, a module “The Kid who cried Supervolcano” will be introduced in two secondary school classrooms in Christchurch and Rotorua. The module highlights four learning objectives: (a) Super-volcanoes are beautiful but can be dangerous (b) earthquake (unrest) activity is normal for super-volcanoes (c) Small eruptions are possible from super-volcanoes and can be dangerous in our lifetimes (d) Super-eruptions are unlikely in our lifetimes. Students will create their digital narrative using the platform Elementari (www.elementari.io). The findings from this study will provide clear understanding of students’ understanding of risk perceptions of volcanic eruption scenarios and associated hazards and inform the design of educational resources geared towards caldera risk literacy.
Following the 2010/2011 Canterbury earthquakes, approximately 60% of multi-story buildings with reinforced concrete walls required demolition. Both practitioners and researchers have increasingly realized that low-damage structural systems could be an alternative to improve the seismic behaviour of concrete buildings and to reduce the economic and social impact of structural damage in future earthquakes. To verify the seismic response of a low-damage concrete wall building representing state-of-art design practice, a shake table test on a two-story concrete building was recently conducted as part of an ILEE-QuakeCoRE collaborative research program. The building utilized flexible wall-to-floor connections in the long span direction and isolating wall-to-floor devices in the short span direction to provide a comparison of their respective behaviour. Additionally, the wall-to-floor interaction such as effects of wall uplift on the link slab, and force transfer mechanism from floor to the wall will be discussed in this paper.
Unreinforced masonry (URM) structures comprise a majority of the global built heritage. The masonry heritage of New Zealand is comparatively younger to its European counterparts. In a country facing frequent earthquakes, the URM buildings are prone to extensive damage and collapse. The Canterbury earthquake sequence proved the same, causing damage to over _% buildings. The ability to assess the severity of building damage is essential for emergency response and recovery. Following the Canterbury earthquakes, the damaged buildings were categorized into various damage states using the EMS-98 scale. This article investigates machine learning techniques such as k-nearest neighbors, decision trees, and random forests, to rapidly assess earthquake-induced building damage. The damage data from the Canterbury earthquake sequence is used to obtain the forecast model, and the performance of each machine learning technique is evaluated using the remaining (test) data. On getting a high accuracy the model is then run for building database collected for Dunedin to predict expected damage during the rupture of the Akatore fault.
There is an increasing recognition that the seismic performance of buildings will be affected by the behaviour of both structural and non-structural elements. In light of this, work has been progressing at the University of Canterbury to develop guidelines for the seismic assessment of commercial glazing systems. This paper reviews the seismic assessment guidelines prescribed in Section C10 of the MBIE building assessment guidelines. Subsequently, the C10 approach is used to assess the drift capacity of a number of glazing units recently tested at the University of Canterbury. Comparing the predicted and observed drift capacities, it would appear that the C10 guidelines may lead to nonconservative estimates of drift capacity. Furthermore, the experimental results indicate that watertightness may be lost at very low drift demands, suggesting that guidance for the assessment of serviceability performance would also be beneficial. As such, it is proposed that improved guidance be provided to assist engineers in considering the possible impact that glazing could have on the structural response of a building in a large earthquake.
Rapid, accurate structural health monitoring (SHM) assesses damage to optimise decision-making. Many SHM methods are designed to track nonlinear stiffness changes as damage. However, highly nonlinear pinched hysteretic systems are problematic in SHM. Model-based SHM often fails as any mismatch between model and measured response dynamics leads to significant error. Thus, modelfree methods of hysteresis loop tracking methods have emerged. This study compares the robustness and accuracy in the presence of significant measurement noise of the proven hysteresis loop analysis (HLA) SHM method with 3 emerging model-free methods and 2 further novel adaptations of these methods using a highly nonlinear, 6-story numerical structure to provide a known ground-truth. Mean absolute errors in identifying a known nonlinear stiffness trajectory assessed at four points over two successive ground motion inputs from September 2010 and February 2011 in Christchurch range from 1.71-10.52%. However, the variability is far wider with maximum errors ranging from 3.90-49.72%, where the second largest maximum absolute error was still 19.74%. The lowest mean and maximum absolute errors were for the HLA method. The next best method had mean absolute error of 2.92% and a maximum of 10.51%. These results show the clear superiority of the HLA method over all current emerging model-free methods designed to manage the highly nonlinear pinching responses common in reinforced concrete structures. These results, combined with high robustness and accuracy in scaled and fullscale experimental studies, provide further validation for using HLA for practical implementation.
INTRODUCTION: After the 2011 Canterbury earthquake, the provision of school social work was extended into a larger number of schools in the greater Christchurch region to support discussions of their practice priorities and responses in post-earthquake schools. FINDINGS: Two main interpretations of need are reflected in the school social workers’ accounts of their work with children and families. Firstly, hardship-focused need, which represented children as adversely influenced by their home circumstances; the interventions were primarily with parents. These families were mainly from schools in low socioeconomic areas. Secondly, anxiety-based need, a newer practice response, which emphasised children who were considered particularly susceptible to the impacts of the disaster event. This article considers how these practitioners conceptualised and responded to the needs of the children and their families in this context. METHOD: A qualitative study examining recovery policy and school social work practice following the earthquakes including 12 semi-structured interviews with school social workers. This article provides a Foucauldian analysis of the social worker participants’ perspectives on emotional and psychological issues for children, particularly those from middle-class families; the main interventions were direct therapeutic work with children themselves. Embedded within these practice accounts are moments in which the social workers contested the predominant, individualising conceptualisations of need to enable more open-ended, negotiable, interconnected relationships in post-earthquake schools. IMPLICATIONS: In the aftermath of disasters, school social workers can reflect on their preferred practice responses and institutional influences in schools to offer children and families opportunities to reject the prevalent norms of risk and vulnerability.
The affect that the Christchurch Earthquake Sequence(CES) had on Christchurch residents was severe, and the consequences are still being felt today. The Ōtākaro Avon River Corridor (OARC) was particularly impacted, a geographic zone that had over 7,000 homes which needed to be vacated and demolished. The CES demonstrated how disastrous a natural hazard can be on unprepared communities. With the increasing volatility of climate change being felt around the world, considering ways in which communities can reduce their vulnerabilities to natural hazards is vital. This research explores how communities can reduce their vulnerabilities to natural hazards by becoming more adaptable, and in particular the extent to which tiny homes could facilitate the development of adaptive communities. In doing so, three main themes were explored throughout this research: (1) tiny homes, (2) environmental adaptation and (3) community adaptability. To ensure that it is relevant and provides real value to the local community, the research draws upon the local case study of the Riverlution Tiny House Village(RTHV), an innovative community approach to adaptable, affordable, low-impact, sustainable living on margins of land which are no longer suitable for permanent housing. The main findings of the research are that Christchurch is at risk of climate change and natural hazards and it is therefore important to consider ways in which communities can stay intact and connected while adapting to the risks they face. Tiny homes provide an effective way of doing so, as they represent a tangible way that people can take adaptation into their own hands while maintaining a high-quality lifestyle.
With sea level rise (SLR) fast becoming one of the most pressing matters for governments worldwide, there has been mass amounts of research done on the impacts of SLR. However, these studies have largely focussed on the ways that SLR will impact both the natural and built environment, along with how the risk to low-lying coastal communities can be mitigated, while the inevitable impacts that this will have on mental well-being has been understudied. This research has attempted to determine the ways in which SLR can impact the mental well-being of those living in a low-lying coastal community, along with how these impacts could be mitigated while remaining adaptable to future environmental change. This was done through conducting an in-depth literature review to understand current SLR projections, the key components of mental well-being and how SLR can influence changes to mental well-being. This literature review then shaped a questionnaire which was distributed to residents of the New Brighton coastline. This questionnaire asked respondents how they interact with the local environment, how much they know about SLR and its associated hazards, whether SLR causes any level of stress or worry along with how respondents feel that these impacts could be mitigated. This research found that SLR impacts the mental well-being of those living in low-lying coastal communities through various methods: firstly, the respondents perceived risk to SLR and its associated hazards, which was found to be influenced by the suburbs that respondents live in, their knowledge of SLR, their main sources of information and the prior experience of the Canterbury Earthquake Sequence (CES). Secondly, the financial aspects of SLR were also found to be drivers of stress or worry, with depreciating property values and rising insurance premiums being frequently noted by respondents. It was found that the majority of respondents agreed that being involved in and informed of the protection process, having more readable and accurate information, and an increased engagement with community events and greenspaces would help to reduce the stress or worry caused by SLR, while remaining adaptable to future environmental change.
This research attempts to understand how the Christchurch rebuild is promoting urban liveability in the Central City, focussing on the influence of communities and neighbourhoods in this area. To do this, gathering the perceptions of Christchurch residents through surveys, a focus group and semi-structured interviews was carried out to see what aspects they believe contribute to creating more liveable places. These methods revealed that there are pockets of neighbourhoods and communities in the inner-city, but no overall sense of community. Results from the semi-structured interviews reinforced this; the current buyers of inner-city property are in the financial position to be able to do this, and they seem to be purchasing in this area due to convenience and investment rather than to join the existing communities in the area. Analysing the survey responses from Central City residents revealed contrasting results. Those currently living in the area felt there is a sense of community in the inner-city, but these are found in pockets of neighbourhoods around the Central City rather than in the overall area. The focus group revealed that community is further prioritised later in life, and that many of the community groups in the inner-city predominantly consist of those who have lived there since before the Christchurch Earthquake Series. However, participants of all three methods believed that the Central City is slowly becoming a lively and vibrant place. To improve urban liveability in the inner-city, it seems that prioritisation of the needs of current inner-city residents is required. Improving these neighbourhoods, whether it be through the implementation of services or providing more communal spaces, is needed to create stronger communities. The feelings of place, connectedness, and belonging that arise from being part of a community or well-connected neighbourhood can improve mental health and wellbeing, ultimately enhancing the overall health of the population as well as the perceived urban liveability of the area.
This is St Peters Riccarton. It was damaged in one of the two big Earthquakes to hit Christchurch in September 2010 and February 2011. Its taken a LONG time for work to really get going, but now that it is, they are also upgrading and extending the church with a modern annexe.